Metamath Proof Explorer


Theorem iblcncfioo

Description: A continuous function F on an open interval ( A (,) B ) with a finite right limit R in A and a finite left limit L in B is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses iblcncfioo.a φ A
iblcncfioo.b φ B
iblcncfioo.f φ F : A B cn
iblcncfioo.l φ L F lim B
iblcncfioo.r φ R F lim A
Assertion iblcncfioo φ F 𝐿 1

Proof

Step Hyp Ref Expression
1 iblcncfioo.a φ A
2 iblcncfioo.b φ B
3 iblcncfioo.f φ F : A B cn
4 iblcncfioo.l φ L F lim B
5 iblcncfioo.r φ R F lim A
6 cncff F : A B cn F : A B
7 3 6 syl φ F : A B
8 7 feqmptd φ F = x A B F x
9 1 adantr φ x A B A
10 eliooord x A B A < x x < B
11 10 simpld x A B A < x
12 11 adantl φ x A B A < x
13 9 12 gtned φ x A B x A
14 13 neneqd φ x A B ¬ x = A
15 14 iffalsed φ x A B if x = A R if x = B L F x = if x = B L F x
16 elioore x A B x
17 16 adantl φ x A B x
18 10 simprd x A B x < B
19 18 adantl φ x A B x < B
20 17 19 ltned φ x A B x B
21 20 neneqd φ x A B ¬ x = B
22 21 iffalsed φ x A B if x = B L F x = F x
23 15 22 eqtrd φ x A B if x = A R if x = B L F x = F x
24 23 eqcomd φ x A B F x = if x = A R if x = B L F x
25 24 mpteq2dva φ x A B F x = x A B if x = A R if x = B L F x
26 8 25 eqtrd φ F = x A B if x = A R if x = B L F x
27 ioossicc A B A B
28 27 a1i φ A B A B
29 ioombl A B dom vol
30 29 a1i φ A B dom vol
31 iftrue x = A if x = A R if x = B L F x = R
32 31 adantl φ x = A if x = A R if x = B L F x = R
33 limccl F lim A
34 33 5 sseldi φ R
35 34 adantr φ x = A R
36 32 35 eqeltrd φ x = A if x = A R if x = B L F x
37 36 adantlr φ x A B x = A if x = A R if x = B L F x
38 iffalse ¬ x = A if x = A R if x = B L F x = if x = B L F x
39 38 ad2antlr φ ¬ x = A x = B if x = A R if x = B L F x = if x = B L F x
40 iftrue x = B if x = B L F x = L
41 40 adantl φ ¬ x = A x = B if x = B L F x = L
42 39 41 eqtrd φ ¬ x = A x = B if x = A R if x = B L F x = L
43 limccl F lim B
44 43 4 sseldi φ L
45 44 ad2antrr φ ¬ x = A x = B L
46 42 45 eqeltrd φ ¬ x = A x = B if x = A R if x = B L F x
47 46 adantllr φ x A B ¬ x = A x = B if x = A R if x = B L F x
48 simplll φ x A B ¬ x = A ¬ x = B φ
49 1 rexrd φ A *
50 48 49 syl φ x A B ¬ x = A ¬ x = B A *
51 2 rexrd φ B *
52 48 51 syl φ x A B ¬ x = A ¬ x = B B *
53 eliccxr x A B x *
54 53 ad3antlr φ x A B ¬ x = A ¬ x = B x *
55 50 52 54 3jca φ x A B ¬ x = A ¬ x = B A * B * x *
56 1 ad2antrr φ x A B ¬ x = A A
57 1 adantr φ x A B A
58 2 adantr φ x A B B
59 simpr φ x A B x A B
60 eliccre A B x A B x
61 57 58 59 60 syl3anc φ x A B x
62 61 adantr φ x A B ¬ x = A x
63 1 2 jca φ A B
64 63 adantr φ x A B A B
65 elicc2 A B x A B x A x x B
66 64 65 syl φ x A B x A B x A x x B
67 59 66 mpbid φ x A B x A x x B
68 67 simp2d φ x A B A x
69 68 adantr φ x A B ¬ x = A A x
70 df-ne x A ¬ x = A
71 70 biimpri ¬ x = A x A
72 71 adantl φ x A B ¬ x = A x A
73 56 62 69 72 leneltd φ x A B ¬ x = A A < x
74 73 adantr φ x A B ¬ x = A ¬ x = B A < x
75 nesym B x ¬ x = B
76 75 biimpri ¬ x = B B x
77 76 adantl φ x A B ¬ x = B B x
78 67 simp3d φ x A B x B
79 61 58 78 3jca φ x A B x B x B
80 79 adantr φ x A B ¬ x = B x B x B
81 leltne x B x B x < B B x
82 80 81 syl φ x A B ¬ x = B x < B B x
83 77 82 mpbird φ x A B ¬ x = B x < B
84 83 adantlr φ x A B ¬ x = A ¬ x = B x < B
85 74 84 jca φ x A B ¬ x = A ¬ x = B A < x x < B
86 elioo3g x A B A * B * x * A < x x < B
87 55 85 86 sylanbrc φ x A B ¬ x = A ¬ x = B x A B
88 48 87 jca φ x A B ¬ x = A ¬ x = B φ x A B
89 7 ffvelrnda φ x A B F x
90 23 89 eqeltrd φ x A B if x = A R if x = B L F x
91 88 90 syl φ x A B ¬ x = A ¬ x = B if x = A R if x = B L F x
92 47 91 pm2.61dan φ x A B ¬ x = A if x = A R if x = B L F x
93 37 92 pm2.61dan φ x A B if x = A R if x = B L F x
94 nfv x φ
95 eqid x A B if x = A R if x = B L F x = x A B if x = A R if x = B L F x
96 94 95 1 2 3 4 5 cncfiooicc φ x A B if x = A R if x = B L F x : A B cn
97 cniccibl A B x A B if x = A R if x = B L F x : A B cn x A B if x = A R if x = B L F x 𝐿 1
98 1 2 96 97 syl3anc φ x A B if x = A R if x = B L F x 𝐿 1
99 28 30 93 98 iblss φ x A B if x = A R if x = B L F x 𝐿 1
100 26 99 eqeltrd φ F 𝐿 1