Metamath Proof Explorer


Theorem iblcncfioo

Description: A continuous function F on an open interval ( A (,) B ) with a finite right limit R in A and a finite left limit L in B is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses iblcncfioo.a φA
iblcncfioo.b φB
iblcncfioo.f φF:ABcn
iblcncfioo.l φLFlimB
iblcncfioo.r φRFlimA
Assertion iblcncfioo φF𝐿1

Proof

Step Hyp Ref Expression
1 iblcncfioo.a φA
2 iblcncfioo.b φB
3 iblcncfioo.f φF:ABcn
4 iblcncfioo.l φLFlimB
5 iblcncfioo.r φRFlimA
6 cncff F:ABcnF:AB
7 3 6 syl φF:AB
8 7 feqmptd φF=xABFx
9 1 adantr φxABA
10 eliooord xABA<xx<B
11 10 simpld xABA<x
12 11 adantl φxABA<x
13 9 12 gtned φxABxA
14 13 neneqd φxAB¬x=A
15 14 iffalsed φxABifx=ARifx=BLFx=ifx=BLFx
16 elioore xABx
17 16 adantl φxABx
18 10 simprd xABx<B
19 18 adantl φxABx<B
20 17 19 ltned φxABxB
21 20 neneqd φxAB¬x=B
22 21 iffalsed φxABifx=BLFx=Fx
23 15 22 eqtrd φxABifx=ARifx=BLFx=Fx
24 23 eqcomd φxABFx=ifx=ARifx=BLFx
25 24 mpteq2dva φxABFx=xABifx=ARifx=BLFx
26 8 25 eqtrd φF=xABifx=ARifx=BLFx
27 ioossicc ABAB
28 27 a1i φABAB
29 ioombl ABdomvol
30 29 a1i φABdomvol
31 iftrue x=Aifx=ARifx=BLFx=R
32 31 adantl φx=Aifx=ARifx=BLFx=R
33 limccl FlimA
34 33 5 sselid φR
35 34 adantr φx=AR
36 32 35 eqeltrd φx=Aifx=ARifx=BLFx
37 36 adantlr φxABx=Aifx=ARifx=BLFx
38 iffalse ¬x=Aifx=ARifx=BLFx=ifx=BLFx
39 38 ad2antlr φ¬x=Ax=Bifx=ARifx=BLFx=ifx=BLFx
40 iftrue x=Bifx=BLFx=L
41 40 adantl φ¬x=Ax=Bifx=BLFx=L
42 39 41 eqtrd φ¬x=Ax=Bifx=ARifx=BLFx=L
43 limccl FlimB
44 43 4 sselid φL
45 44 ad2antrr φ¬x=Ax=BL
46 42 45 eqeltrd φ¬x=Ax=Bifx=ARifx=BLFx
47 46 adantllr φxAB¬x=Ax=Bifx=ARifx=BLFx
48 simplll φxAB¬x=A¬x=Bφ
49 1 rexrd φA*
50 48 49 syl φxAB¬x=A¬x=BA*
51 2 rexrd φB*
52 48 51 syl φxAB¬x=A¬x=BB*
53 eliccxr xABx*
54 53 ad3antlr φxAB¬x=A¬x=Bx*
55 50 52 54 3jca φxAB¬x=A¬x=BA*B*x*
56 1 ad2antrr φxAB¬x=AA
57 1 adantr φxABA
58 2 adantr φxABB
59 simpr φxABxAB
60 eliccre ABxABx
61 57 58 59 60 syl3anc φxABx
62 61 adantr φxAB¬x=Ax
63 1 2 jca φAB
64 63 adantr φxABAB
65 elicc2 ABxABxAxxB
66 64 65 syl φxABxABxAxxB
67 59 66 mpbid φxABxAxxB
68 67 simp2d φxABAx
69 68 adantr φxAB¬x=AAx
70 df-ne xA¬x=A
71 70 biimpri ¬x=AxA
72 71 adantl φxAB¬x=AxA
73 56 62 69 72 leneltd φxAB¬x=AA<x
74 73 adantr φxAB¬x=A¬x=BA<x
75 nesym Bx¬x=B
76 75 biimpri ¬x=BBx
77 76 adantl φxAB¬x=BBx
78 67 simp3d φxABxB
79 61 58 78 3jca φxABxBxB
80 79 adantr φxAB¬x=BxBxB
81 leltne xBxBx<BBx
82 80 81 syl φxAB¬x=Bx<BBx
83 77 82 mpbird φxAB¬x=Bx<B
84 83 adantlr φxAB¬x=A¬x=Bx<B
85 74 84 jca φxAB¬x=A¬x=BA<xx<B
86 elioo3g xABA*B*x*A<xx<B
87 55 85 86 sylanbrc φxAB¬x=A¬x=BxAB
88 48 87 jca φxAB¬x=A¬x=BφxAB
89 7 ffvelcdmda φxABFx
90 23 89 eqeltrd φxABifx=ARifx=BLFx
91 88 90 syl φxAB¬x=A¬x=Bifx=ARifx=BLFx
92 47 91 pm2.61dan φxAB¬x=Aifx=ARifx=BLFx
93 37 92 pm2.61dan φxABifx=ARifx=BLFx
94 nfv xφ
95 eqid xABifx=ARifx=BLFx=xABifx=ARifx=BLFx
96 94 95 1 2 3 4 5 cncfiooicc φxABifx=ARifx=BLFx:ABcn
97 cniccibl ABxABifx=ARifx=BLFx:ABcnxABifx=ARifx=BLFx𝐿1
98 1 2 96 97 syl3anc φxABifx=ARifx=BLFx𝐿1
99 28 30 93 98 iblss φxABifx=ARifx=BLFx𝐿1
100 26 99 eqeltrd φF𝐿1