Step |
Hyp |
Ref |
Expression |
1 |
|
notnotb |
|
2 |
|
nfv |
|
3 |
|
nfv |
|
4 |
|
nfv |
|
5 |
|
nfv |
|
6 |
|
nfsbc1v |
|
7 |
4 5 6
|
nf3an |
|
8 |
|
nfv |
|
9 |
|
nfv |
|
10 |
|
nfcv |
|
11 |
|
nfsbc1v |
|
12 |
10 11
|
nfsbcw |
|
13 |
8 9 12
|
nf3an |
|
14 |
|
opeq12 |
|
15 |
14
|
eqeq2d |
|
16 |
|
simpl |
|
17 |
|
simpr |
|
18 |
16 17
|
neeq12d |
|
19 |
|
sbceq1a |
|
20 |
|
sbceq1a |
|
21 |
19 20
|
sylan9bbr |
|
22 |
15 18 21
|
3anbi123d |
|
23 |
2 3 7 13 22
|
cbvex2v |
|
24 |
|
vex |
|
25 |
|
vex |
|
26 |
24 25
|
opth |
|
27 |
|
eleq1w |
|
28 |
27
|
biimpcd |
|
29 |
28
|
adantl |
|
30 |
29
|
adantl |
|
31 |
30
|
com12 |
|
32 |
31
|
adantl |
|
33 |
26 32
|
sylbi |
|
34 |
33
|
3ad2ant1 |
|
35 |
34
|
impcom |
|
36 |
|
eleq1w |
|
37 |
36
|
biimpcd |
|
38 |
37
|
adantr |
|
39 |
38
|
adantl |
|
40 |
39
|
com12 |
|
41 |
40
|
adantr |
|
42 |
26 41
|
sylbi |
|
43 |
42
|
3ad2ant1 |
|
44 |
43
|
impcom |
|
45 |
|
eqidd |
|
46 |
|
necom |
|
47 |
46
|
biimpi |
|
48 |
47
|
3ad2ant2 |
|
49 |
48
|
adantl |
|
50 |
|
dfich2 |
|
51 |
|
2sp |
|
52 |
|
sbsbc |
|
53 |
52
|
sbbii |
|
54 |
|
sbsbc |
|
55 |
53 54
|
bitri |
|
56 |
|
sbsbc |
|
57 |
56
|
sbbii |
|
58 |
|
sbsbc |
|
59 |
57 58
|
bitri |
|
60 |
51 55 59
|
3bitr3g |
|
61 |
60
|
biimpd |
|
62 |
50 61
|
sylbi |
|
63 |
62
|
adantr |
|
64 |
63
|
com12 |
|
65 |
64
|
3ad2ant3 |
|
66 |
65
|
impcom |
|
67 |
|
sbccom |
|
68 |
66 67
|
sylibr |
|
69 |
45 49 68
|
3jca |
|
70 |
|
nfv |
|
71 |
|
nfv |
|
72 |
|
nfsbc1v |
|
73 |
70 71 72
|
nf3an |
|
74 |
|
opeq2 |
|
75 |
74
|
eqeq2d |
|
76 |
|
neeq2 |
|
77 |
|
sbceq1a |
|
78 |
75 76 77
|
3anbi123d |
|
79 |
10 73 78
|
spcegf |
|
80 |
44 69 79
|
sylc |
|
81 |
|
nfcv |
|
82 |
|
nfv |
|
83 |
|
nfv |
|
84 |
|
nfsbc1v |
|
85 |
82 83 84
|
nf3an |
|
86 |
85
|
nfex |
|
87 |
|
opeq1 |
|
88 |
87
|
eqeq2d |
|
89 |
|
neeq1 |
|
90 |
|
sbceq1a |
|
91 |
88 89 90
|
3anbi123d |
|
92 |
91
|
exbidv |
|
93 |
81 86 92
|
spcegf |
|
94 |
35 80 93
|
sylc |
|
95 |
|
vex |
|
96 |
|
vex |
|
97 |
95 96
|
opth1 |
|
98 |
97
|
equcomd |
|
99 |
98
|
necon3ai |
|
100 |
99
|
adantl |
|
101 |
|
eqeq2 |
|
102 |
101
|
adantr |
|
103 |
100 102
|
mtbird |
|
104 |
103
|
3adant3 |
|
105 |
104
|
adantl |
|
106 |
94 105
|
jcnd |
|
107 |
|
opeq1 |
|
108 |
107
|
eqeq1d |
|
109 |
108
|
3anbi1d |
|
110 |
109
|
2exbidv |
|
111 |
107
|
eqeq1d |
|
112 |
110 111
|
imbi12d |
|
113 |
112
|
notbid |
|
114 |
|
opeq2 |
|
115 |
114
|
eqeq1d |
|
116 |
115
|
3anbi1d |
|
117 |
116
|
2exbidv |
|
118 |
114
|
eqeq1d |
|
119 |
117 118
|
imbi12d |
|
120 |
119
|
notbid |
|
121 |
113 120
|
rspc2ev |
|
122 |
35 44 106 121
|
syl3anc |
|
123 |
|
rexnal2 |
|
124 |
122 123
|
sylib |
|
125 |
124
|
ex |
|
126 |
125
|
exlimdvv |
|
127 |
23 126
|
syl5bi |
|
128 |
1 127
|
syl5bir |
|
129 |
128
|
orrd |
|
130 |
|
ianor |
|
131 |
129 130
|
sylibr |
|
132 |
131
|
ralrimivva |
|
133 |
|
ralnex2 |
|
134 |
132 133
|
sylib |
|
135 |
|
eqeq1 |
|
136 |
135
|
3anbi1d |
|
137 |
136
|
2exbidv |
|
138 |
|
eqeq1 |
|
139 |
138
|
3anbi1d |
|
140 |
139
|
2exbidv |
|
141 |
137 140
|
reuop |
|
142 |
134 141
|
sylnibr |
|