Metamath Proof Explorer


Theorem ichnreuop

Description: If the setvar variables are interchangeable in a wff, there is never a unique ordered pair with different components fulfilling the wff (because if <. a , b >. fulfils the wff, then also <. b , a >. fulfils the wff). (Contributed by AV, 27-Aug-2023)

Ref Expression
Assertion ichnreuop abφ¬∃!pX×Xabp=ababφ

Proof

Step Hyp Ref Expression
1 notnotb abxy=ababφ¬¬abxy=ababφ
2 nfv cxy=ababφ
3 nfv dxy=ababφ
4 nfv axy=cd
5 nfv acd
6 nfsbc1v a[˙c/a]˙[˙d/b]˙φ
7 4 5 6 nf3an axy=cdcd[˙c/a]˙[˙d/b]˙φ
8 nfv bxy=cd
9 nfv bcd
10 nfcv _bc
11 nfsbc1v b[˙d/b]˙φ
12 10 11 nfsbcw b[˙c/a]˙[˙d/b]˙φ
13 8 9 12 nf3an bxy=cdcd[˙c/a]˙[˙d/b]˙φ
14 opeq12 a=cb=dab=cd
15 14 eqeq2d a=cb=dxy=abxy=cd
16 simpl a=cb=da=c
17 simpr a=cb=db=d
18 16 17 neeq12d a=cb=dabcd
19 sbceq1a b=dφ[˙d/b]˙φ
20 sbceq1a a=c[˙d/b]˙φ[˙c/a]˙[˙d/b]˙φ
21 19 20 sylan9bbr a=cb=dφ[˙c/a]˙[˙d/b]˙φ
22 15 18 21 3anbi123d a=cb=dxy=ababφxy=cdcd[˙c/a]˙[˙d/b]˙φ
23 2 3 7 13 22 cbvex2v abxy=ababφcdxy=cdcd[˙c/a]˙[˙d/b]˙φ
24 vex xV
25 vex yV
26 24 25 opth xy=cdx=cy=d
27 eleq1w y=dyXdX
28 27 biimpcd yXy=ddX
29 28 adantl xXyXy=ddX
30 29 adantl abφxXyXy=ddX
31 30 com12 y=dabφxXyXdX
32 31 adantl x=cy=dabφxXyXdX
33 26 32 sylbi xy=cdabφxXyXdX
34 33 3ad2ant1 xy=cdcd[˙c/a]˙[˙d/b]˙φabφxXyXdX
35 34 impcom abφxXyXxy=cdcd[˙c/a]˙[˙d/b]˙φdX
36 eleq1w x=cxXcX
37 36 biimpcd xXx=ccX
38 37 adantr xXyXx=ccX
39 38 adantl abφxXyXx=ccX
40 39 com12 x=cabφxXyXcX
41 40 adantr x=cy=dabφxXyXcX
42 26 41 sylbi xy=cdabφxXyXcX
43 42 3ad2ant1 xy=cdcd[˙c/a]˙[˙d/b]˙φabφxXyXcX
44 43 impcom abφxXyXxy=cdcd[˙c/a]˙[˙d/b]˙φcX
45 eqidd abφxXyXxy=cdcd[˙c/a]˙[˙d/b]˙φdc=dc
46 necom cddc
47 46 biimpi cddc
48 47 3ad2ant2 xy=cdcd[˙c/a]˙[˙d/b]˙φdc
49 48 adantl abφxXyXxy=cdcd[˙c/a]˙[˙d/b]˙φdc
50 dfich2 abφcdcadbφdacbφ
51 2sp cdcadbφdacbφcadbφdacbφ
52 sbsbc dbφ[˙d/b]˙φ
53 52 sbbii cadbφca[˙d/b]˙φ
54 sbsbc ca[˙d/b]˙φ[˙c/a]˙[˙d/b]˙φ
55 53 54 bitri cadbφ[˙c/a]˙[˙d/b]˙φ
56 sbsbc cbφ[˙c/b]˙φ
57 56 sbbii dacbφda[˙c/b]˙φ
58 sbsbc da[˙c/b]˙φ[˙d/a]˙[˙c/b]˙φ
59 57 58 bitri dacbφ[˙d/a]˙[˙c/b]˙φ
60 51 55 59 3bitr3g cdcadbφdacbφ[˙c/a]˙[˙d/b]˙φ[˙d/a]˙[˙c/b]˙φ
61 60 biimpd cdcadbφdacbφ[˙c/a]˙[˙d/b]˙φ[˙d/a]˙[˙c/b]˙φ
62 50 61 sylbi abφ[˙c/a]˙[˙d/b]˙φ[˙d/a]˙[˙c/b]˙φ
63 62 adantr abφxXyX[˙c/a]˙[˙d/b]˙φ[˙d/a]˙[˙c/b]˙φ
64 63 com12 [˙c/a]˙[˙d/b]˙φabφxXyX[˙d/a]˙[˙c/b]˙φ
65 64 3ad2ant3 xy=cdcd[˙c/a]˙[˙d/b]˙φabφxXyX[˙d/a]˙[˙c/b]˙φ
66 65 impcom abφxXyXxy=cdcd[˙c/a]˙[˙d/b]˙φ[˙d/a]˙[˙c/b]˙φ
67 sbccom [˙c/b]˙[˙d/a]˙φ[˙d/a]˙[˙c/b]˙φ
68 66 67 sylibr abφxXyXxy=cdcd[˙c/a]˙[˙d/b]˙φ[˙c/b]˙[˙d/a]˙φ
69 45 49 68 3jca abφxXyXxy=cdcd[˙c/a]˙[˙d/b]˙φdc=dcdc[˙c/b]˙[˙d/a]˙φ
70 nfv bdc=dc
71 nfv bdc
72 nfsbc1v b[˙c/b]˙[˙d/a]˙φ
73 70 71 72 nf3an bdc=dcdc[˙c/b]˙[˙d/a]˙φ
74 opeq2 b=cdb=dc
75 74 eqeq2d b=cdc=dbdc=dc
76 neeq2 b=cdbdc
77 sbceq1a b=c[˙d/a]˙φ[˙c/b]˙[˙d/a]˙φ
78 75 76 77 3anbi123d b=cdc=dbdb[˙d/a]˙φdc=dcdc[˙c/b]˙[˙d/a]˙φ
79 10 73 78 spcegf cXdc=dcdc[˙c/b]˙[˙d/a]˙φbdc=dbdb[˙d/a]˙φ
80 44 69 79 sylc abφxXyXxy=cdcd[˙c/a]˙[˙d/b]˙φbdc=dbdb[˙d/a]˙φ
81 nfcv _ad
82 nfv adc=db
83 nfv adb
84 nfsbc1v a[˙d/a]˙φ
85 82 83 84 nf3an adc=dbdb[˙d/a]˙φ
86 85 nfex abdc=dbdb[˙d/a]˙φ
87 opeq1 a=dab=db
88 87 eqeq2d a=ddc=abdc=db
89 neeq1 a=dabdb
90 sbceq1a a=dφ[˙d/a]˙φ
91 88 89 90 3anbi123d a=ddc=ababφdc=dbdb[˙d/a]˙φ
92 91 exbidv a=dbdc=ababφbdc=dbdb[˙d/a]˙φ
93 81 86 92 spcegf dXbdc=dbdb[˙d/a]˙φabdc=ababφ
94 35 80 93 sylc abφxXyXxy=cdcd[˙c/a]˙[˙d/b]˙φabdc=ababφ
95 vex dV
96 vex cV
97 95 96 opth1 dc=cdd=c
98 97 equcomd dc=cdc=d
99 98 necon3ai cd¬dc=cd
100 99 adantl xy=cdcd¬dc=cd
101 eqeq2 xy=cddc=xydc=cd
102 101 adantr xy=cdcddc=xydc=cd
103 100 102 mtbird xy=cdcd¬dc=xy
104 103 3adant3 xy=cdcd[˙c/a]˙[˙d/b]˙φ¬dc=xy
105 104 adantl abφxXyXxy=cdcd[˙c/a]˙[˙d/b]˙φ¬dc=xy
106 94 105 jcnd abφxXyXxy=cdcd[˙c/a]˙[˙d/b]˙φ¬abdc=ababφdc=xy
107 opeq1 v=dvw=dw
108 107 eqeq1d v=dvw=abdw=ab
109 108 3anbi1d v=dvw=ababφdw=ababφ
110 109 2exbidv v=dabvw=ababφabdw=ababφ
111 107 eqeq1d v=dvw=xydw=xy
112 110 111 imbi12d v=dabvw=ababφvw=xyabdw=ababφdw=xy
113 112 notbid v=d¬abvw=ababφvw=xy¬abdw=ababφdw=xy
114 opeq2 w=cdw=dc
115 114 eqeq1d w=cdw=abdc=ab
116 115 3anbi1d w=cdw=ababφdc=ababφ
117 116 2exbidv w=cabdw=ababφabdc=ababφ
118 114 eqeq1d w=cdw=xydc=xy
119 117 118 imbi12d w=cabdw=ababφdw=xyabdc=ababφdc=xy
120 119 notbid w=c¬abdw=ababφdw=xy¬abdc=ababφdc=xy
121 113 120 rspc2ev dXcX¬abdc=ababφdc=xyvXwX¬abvw=ababφvw=xy
122 35 44 106 121 syl3anc abφxXyXxy=cdcd[˙c/a]˙[˙d/b]˙φvXwX¬abvw=ababφvw=xy
123 rexnal2 vXwX¬abvw=ababφvw=xy¬vXwXabvw=ababφvw=xy
124 122 123 sylib abφxXyXxy=cdcd[˙c/a]˙[˙d/b]˙φ¬vXwXabvw=ababφvw=xy
125 124 ex abφxXyXxy=cdcd[˙c/a]˙[˙d/b]˙φ¬vXwXabvw=ababφvw=xy
126 125 exlimdvv abφxXyXcdxy=cdcd[˙c/a]˙[˙d/b]˙φ¬vXwXabvw=ababφvw=xy
127 23 126 biimtrid abφxXyXabxy=ababφ¬vXwXabvw=ababφvw=xy
128 1 127 biimtrrid abφxXyX¬¬abxy=ababφ¬vXwXabvw=ababφvw=xy
129 128 orrd abφxXyX¬abxy=ababφ¬vXwXabvw=ababφvw=xy
130 ianor ¬abxy=ababφvXwXabvw=ababφvw=xy¬abxy=ababφ¬vXwXabvw=ababφvw=xy
131 129 130 sylibr abφxXyX¬abxy=ababφvXwXabvw=ababφvw=xy
132 131 ralrimivva abφxXyX¬abxy=ababφvXwXabvw=ababφvw=xy
133 ralnex2 xXyX¬abxy=ababφvXwXabvw=ababφvw=xy¬xXyXabxy=ababφvXwXabvw=ababφvw=xy
134 132 133 sylib abφ¬xXyXabxy=ababφvXwXabvw=ababφvw=xy
135 eqeq1 p=xyp=abxy=ab
136 135 3anbi1d p=xyp=ababφxy=ababφ
137 136 2exbidv p=xyabp=ababφabxy=ababφ
138 eqeq1 p=vwp=abvw=ab
139 138 3anbi1d p=vwp=ababφvw=ababφ
140 139 2exbidv p=vwabp=ababφabvw=ababφ
141 137 140 reuop ∃!pX×Xabp=ababφxXyXabxy=ababφvXwXabvw=ababφvw=xy
142 134 141 sylnibr abφ¬∃!pX×Xabp=ababφ