Metamath Proof Explorer


Theorem imaslmod

Description: The image structure of a left module is a left module. (Contributed by Thierry Arnoux, 15-May-2023)

Ref Expression
Hypotheses imaslmod.u φN=F𝑠M
imaslmod.v V=BaseM
imaslmod.k S=BaseScalarM
imaslmod.p +˙=+M
imaslmod.t ·˙=M
imaslmod.o 0˙=0M
imaslmod.f φF:VontoB
imaslmod.e1 φaVbVpVqVFa=FpFb=FqFa+˙b=Fp+˙q
imaslmod.e2 φkSaVbVFa=FbFk·˙a=Fk·˙b
imaslmod.l φMLMod
Assertion imaslmod φNLMod

Proof

Step Hyp Ref Expression
1 imaslmod.u φN=F𝑠M
2 imaslmod.v V=BaseM
3 imaslmod.k S=BaseScalarM
4 imaslmod.p +˙=+M
5 imaslmod.t ·˙=M
6 imaslmod.o 0˙=0M
7 imaslmod.f φF:VontoB
8 imaslmod.e1 φaVbVpVqVFa=FpFb=FqFa+˙b=Fp+˙q
9 imaslmod.e2 φkSaVbVFa=FbFk·˙a=Fk·˙b
10 imaslmod.l φMLMod
11 2 a1i φV=BaseM
12 1 11 7 10 imasbas φB=BaseN
13 eqidd φ+N=+N
14 eqid ScalarM=ScalarM
15 1 11 7 10 14 imassca φScalarM=ScalarN
16 eqidd φN=N
17 3 a1i φS=BaseScalarM
18 eqidd φ+ScalarM=+ScalarM
19 eqidd φScalarM=ScalarM
20 eqidd φ1ScalarM=1ScalarM
21 14 lmodring MLModScalarMRing
22 10 21 syl φScalarMRing
23 4 a1i φ+˙=+M
24 lmodgrp MLModMGrp
25 10 24 syl φMGrp
26 1 11 23 7 8 25 6 imasgrp φNGrpF0˙=0N
27 26 simpld φNGrp
28 eqid N=N
29 10 adantr φkSbVMLMod
30 simprl φkSbVkS
31 simprr φkSbVbV
32 2 14 5 3 lmodvscl MLModkSbVk·˙bV
33 29 30 31 32 syl3anc φkSbVk·˙bV
34 1 11 7 10 14 3 5 28 9 33 imasvscaf φN:S×BB
35 34 fovcld φuSvBuNvB
36 simp-5l φuSvBwBzVFz=wyVFy=vφ
37 simpllr φuSvBwBzVFz=wuSvBwB
38 37 simp1d φuSvBwBzVFz=wuS
39 38 ad2antrr φuSvBwBzVFz=wyVFy=vuS
40 36 25 syl φuSvBwBzVFz=wyVFy=vMGrp
41 simplr φuSvBwBzVFz=wyVFy=vyV
42 simp-4r φuSvBwBzVFz=wyVFy=vzV
43 2 4 grpcl MGrpyVzVy+˙zV
44 40 41 42 43 syl3anc φuSvBwBzVFz=wyVFy=vy+˙zV
45 1 11 7 10 14 3 5 28 9 imasvscaval φuSy+˙zVuNFy+˙z=Fu·˙y+˙z
46 36 39 44 45 syl3anc φuSvBwBzVFz=wyVFy=vuNFy+˙z=Fu·˙y+˙z
47 eqid +N=+N
48 7 8 1 11 10 4 47 imasaddval φyVzVFy+NFz=Fy+˙z
49 36 41 42 48 syl3anc φuSvBwBzVFz=wyVFy=vFy+NFz=Fy+˙z
50 simpr φuSvBwBzVFz=wyVFy=vFy=v
51 simpllr φuSvBwBzVFz=wyVFy=vFz=w
52 50 51 oveq12d φuSvBwBzVFz=wyVFy=vFy+NFz=v+Nw
53 49 52 eqtr3d φuSvBwBzVFz=wyVFy=vFy+˙z=v+Nw
54 53 oveq2d φuSvBwBzVFz=wyVFy=vuNFy+˙z=uNv+Nw
55 36 10 syl φuSvBwBzVFz=wyVFy=vMLMod
56 2 4 14 5 3 lmodvsdi MLModuSyVzVu·˙y+˙z=u·˙y+˙u·˙z
57 55 39 41 42 56 syl13anc φuSvBwBzVFz=wyVFy=vu·˙y+˙z=u·˙y+˙u·˙z
58 57 fveq2d φuSvBwBzVFz=wyVFy=vFu·˙y+˙z=Fu·˙y+˙u·˙z
59 46 54 58 3eqtr3d φuSvBwBzVFz=wyVFy=vuNv+Nw=Fu·˙y+˙u·˙z
60 2 14 5 3 lmodvscl MLModuSyVu·˙yV
61 55 39 41 60 syl3anc φuSvBwBzVFz=wyVFy=vu·˙yV
62 2 14 5 3 lmodvscl MLModuSzVu·˙zV
63 55 39 42 62 syl3anc φuSvBwBzVFz=wyVFy=vu·˙zV
64 7 8 1 11 10 4 47 imasaddval φu·˙yVu·˙zVFu·˙y+NFu·˙z=Fu·˙y+˙u·˙z
65 36 61 63 64 syl3anc φuSvBwBzVFz=wyVFy=vFu·˙y+NFu·˙z=Fu·˙y+˙u·˙z
66 1 11 7 10 14 3 5 28 9 imasvscaval φuSyVuNFy=Fu·˙y
67 36 39 41 66 syl3anc φuSvBwBzVFz=wyVFy=vuNFy=Fu·˙y
68 50 oveq2d φuSvBwBzVFz=wyVFy=vuNFy=uNv
69 67 68 eqtr3d φuSvBwBzVFz=wyVFy=vFu·˙y=uNv
70 1 11 7 10 14 3 5 28 9 imasvscaval φuSzVuNFz=Fu·˙z
71 36 39 42 70 syl3anc φuSvBwBzVFz=wyVFy=vuNFz=Fu·˙z
72 51 oveq2d φuSvBwBzVFz=wyVFy=vuNFz=uNw
73 71 72 eqtr3d φuSvBwBzVFz=wyVFy=vFu·˙z=uNw
74 69 73 oveq12d φuSvBwBzVFz=wyVFy=vFu·˙y+NFu·˙z=uNv+NuNw
75 59 65 74 3eqtr2d φuSvBwBzVFz=wyVFy=vuNv+Nw=uNv+NuNw
76 simplll φuSvBwBzVFz=wφ
77 37 simp2d φuSvBwBzVFz=wvB
78 fofn F:VontoBFFnV
79 7 78 syl φFFnV
80 simpr φvBvB
81 forn F:VontoBranF=B
82 7 81 syl φranF=B
83 82 adantr φvBranF=B
84 80 83 eleqtrrd φvBvranF
85 fvelrnb FFnVvranFyVFy=v
86 85 biimpa FFnVvranFyVFy=v
87 79 84 86 syl2an2r φvByVFy=v
88 76 77 87 syl2anc φuSvBwBzVFz=wyVFy=v
89 75 88 r19.29a φuSvBwBzVFz=wuNv+Nw=uNv+NuNw
90 simpr φwBwB
91 82 adantr φwBranF=B
92 90 91 eleqtrrd φwBwranF
93 fvelrnb FFnVwranFzVFz=w
94 93 biimpa FFnVwranFzVFz=w
95 79 92 94 syl2an2r φwBzVFz=w
96 95 3ad2antr3 φuSvBwBzVFz=w
97 89 96 r19.29a φuSvBwBuNv+Nw=uNv+NuNw
98 simplll φuSvSwBzVFz=wφ
99 10 ad3antrrr φuSvSwBzVFz=wMLMod
100 simpllr φuSvSwBzVFz=wuSvSwB
101 100 simp1d φuSvSwBzVFz=wuS
102 100 simp2d φuSvSwBzVFz=wvS
103 eqid +ScalarM=+ScalarM
104 14 3 103 lmodacl MLModuSvSu+ScalarMvS
105 99 101 102 104 syl3anc φuSvSwBzVFz=wu+ScalarMvS
106 simplr φuSvSwBzVFz=wzV
107 1 11 7 10 14 3 5 28 9 imasvscaval φu+ScalarMvSzVu+ScalarMvNFz=Fu+ScalarMv·˙z
108 98 105 106 107 syl3anc φuSvSwBzVFz=wu+ScalarMvNFz=Fu+ScalarMv·˙z
109 simpr φuSvSwBzVFz=wFz=w
110 109 oveq2d φuSvSwBzVFz=wu+ScalarMvNFz=u+ScalarMvNw
111 2 4 14 5 3 103 lmodvsdir MLModuSvSzVu+ScalarMv·˙z=u·˙z+˙v·˙z
112 99 101 102 106 111 syl13anc φuSvSwBzVFz=wu+ScalarMv·˙z=u·˙z+˙v·˙z
113 112 fveq2d φuSvSwBzVFz=wFu+ScalarMv·˙z=Fu·˙z+˙v·˙z
114 99 101 106 62 syl3anc φuSvSwBzVFz=wu·˙zV
115 2 14 5 3 lmodvscl MLModvSzVv·˙zV
116 99 102 106 115 syl3anc φuSvSwBzVFz=wv·˙zV
117 7 8 1 11 10 4 47 imasaddval φu·˙zVv·˙zVFu·˙z+NFv·˙z=Fu·˙z+˙v·˙z
118 98 114 116 117 syl3anc φuSvSwBzVFz=wFu·˙z+NFv·˙z=Fu·˙z+˙v·˙z
119 98 101 106 70 syl3anc φuSvSwBzVFz=wuNFz=Fu·˙z
120 109 oveq2d φuSvSwBzVFz=wuNFz=uNw
121 119 120 eqtr3d φuSvSwBzVFz=wFu·˙z=uNw
122 1 11 7 10 14 3 5 28 9 imasvscaval φvSzVvNFz=Fv·˙z
123 98 102 106 122 syl3anc φuSvSwBzVFz=wvNFz=Fv·˙z
124 109 oveq2d φuSvSwBzVFz=wvNFz=vNw
125 123 124 eqtr3d φuSvSwBzVFz=wFv·˙z=vNw
126 121 125 oveq12d φuSvSwBzVFz=wFu·˙z+NFv·˙z=uNw+NvNw
127 113 118 126 3eqtr2d φuSvSwBzVFz=wFu+ScalarMv·˙z=uNw+NvNw
128 108 110 127 3eqtr3d φuSvSwBzVFz=wu+ScalarMvNw=uNw+NvNw
129 95 3ad2antr3 φuSvSwBzVFz=w
130 128 129 r19.29a φuSvSwBu+ScalarMvNw=uNw+NvNw
131 eqid ScalarM=ScalarM
132 14 3 131 lmodmcl MLModuSvSuScalarMvS
133 99 101 102 132 syl3anc φuSvSwBzVFz=wuScalarMvS
134 1 11 7 10 14 3 5 28 9 imasvscaval φuScalarMvSzVuScalarMvNFz=FuScalarMv·˙z
135 98 133 106 134 syl3anc φuSvSwBzVFz=wuScalarMvNFz=FuScalarMv·˙z
136 109 oveq2d φuSvSwBzVFz=wuScalarMvNFz=uScalarMvNw
137 1 11 7 10 14 3 5 28 9 imasvscaval φuSv·˙zVuNFv·˙z=Fu·˙v·˙z
138 98 101 116 137 syl3anc φuSvSwBzVFz=wuNFv·˙z=Fu·˙v·˙z
139 123 oveq2d φuSvSwBzVFz=wuNvNFz=uNFv·˙z
140 2 14 5 3 131 lmodvsass MLModuSvSzVuScalarMv·˙z=u·˙v·˙z
141 99 101 102 106 140 syl13anc φuSvSwBzVFz=wuScalarMv·˙z=u·˙v·˙z
142 141 fveq2d φuSvSwBzVFz=wFuScalarMv·˙z=Fu·˙v·˙z
143 138 139 142 3eqtr4rd φuSvSwBzVFz=wFuScalarMv·˙z=uNvNFz
144 135 136 143 3eqtr3d φuSvSwBzVFz=wuScalarMvNw=uNvNFz
145 124 oveq2d φuSvSwBzVFz=wuNvNFz=uNvNw
146 144 145 eqtrd φuSvSwBzVFz=wuScalarMvNw=uNvNw
147 146 129 r19.29a φuSvSwBuScalarMvNw=uNvNw
148 simplll φuBxVFx=uφ
149 eqid 1ScalarM=1ScalarM
150 3 149 ringidcl ScalarMRing1ScalarMS
151 22 150 syl φ1ScalarMS
152 151 ad3antrrr φuBxVFx=u1ScalarMS
153 simplr φuBxVFx=uxV
154 1 11 7 10 14 3 5 28 9 imasvscaval φ1ScalarMSxV1ScalarMNFx=F1ScalarM·˙x
155 148 152 153 154 syl3anc φuBxVFx=u1ScalarMNFx=F1ScalarM·˙x
156 simpr φuBxVFx=uFx=u
157 156 oveq2d φuBxVFx=u1ScalarMNFx=1ScalarMNu
158 10 ad3antrrr φuBxVFx=uMLMod
159 2 14 5 149 lmodvs1 MLModxV1ScalarM·˙x=x
160 158 153 159 syl2anc φuBxVFx=u1ScalarM·˙x=x
161 160 fveq2d φuBxVFx=uF1ScalarM·˙x=Fx
162 161 156 eqtrd φuBxVFx=uF1ScalarM·˙x=u
163 155 157 162 3eqtr3d φuBxVFx=u1ScalarMNu=u
164 simpr φuBuB
165 82 adantr φuBranF=B
166 164 165 eleqtrrd φuBuranF
167 fvelrnb FFnVuranFxVFx=u
168 167 biimpa FFnVuranFxVFx=u
169 79 166 168 syl2an2r φuBxVFx=u
170 163 169 r19.29a φuB1ScalarMNu=u
171 12 13 15 16 17 18 19 20 22 27 35 97 130 147 170 islmodd φNLMod