Metamath Proof Explorer


Theorem imaslmod

Description: The image structure of a left module is a left module. (Contributed by Thierry Arnoux, 15-May-2023)

Ref Expression
Hypotheses imaslmod.u φ N = F 𝑠 M
imaslmod.v V = Base M
imaslmod.k S = Base Scalar M
imaslmod.p + ˙ = + M
imaslmod.t · ˙ = M
imaslmod.o 0 ˙ = 0 M
imaslmod.f φ F : V onto B
imaslmod.e1 φ a V b V p V q V F a = F p F b = F q F a + ˙ b = F p + ˙ q
imaslmod.e2 φ k S a V b V F a = F b F k · ˙ a = F k · ˙ b
imaslmod.l φ M LMod
Assertion imaslmod φ N LMod

Proof

Step Hyp Ref Expression
1 imaslmod.u φ N = F 𝑠 M
2 imaslmod.v V = Base M
3 imaslmod.k S = Base Scalar M
4 imaslmod.p + ˙ = + M
5 imaslmod.t · ˙ = M
6 imaslmod.o 0 ˙ = 0 M
7 imaslmod.f φ F : V onto B
8 imaslmod.e1 φ a V b V p V q V F a = F p F b = F q F a + ˙ b = F p + ˙ q
9 imaslmod.e2 φ k S a V b V F a = F b F k · ˙ a = F k · ˙ b
10 imaslmod.l φ M LMod
11 2 a1i φ V = Base M
12 1 11 7 10 imasbas φ B = Base N
13 eqidd φ + N = + N
14 eqid Scalar M = Scalar M
15 1 11 7 10 14 imassca φ Scalar M = Scalar N
16 eqidd φ N = N
17 3 a1i φ S = Base Scalar M
18 eqidd φ + Scalar M = + Scalar M
19 eqidd φ Scalar M = Scalar M
20 eqidd φ 1 Scalar M = 1 Scalar M
21 14 lmodring M LMod Scalar M Ring
22 10 21 syl φ Scalar M Ring
23 4 a1i φ + ˙ = + M
24 lmodgrp M LMod M Grp
25 10 24 syl φ M Grp
26 1 11 23 7 8 25 6 imasgrp φ N Grp F 0 ˙ = 0 N
27 26 simpld φ N Grp
28 eqid N = N
29 10 adantr φ k S b V M LMod
30 simprl φ k S b V k S
31 simprr φ k S b V b V
32 2 14 5 3 lmodvscl M LMod k S b V k · ˙ b V
33 29 30 31 32 syl3anc φ k S b V k · ˙ b V
34 1 11 7 10 14 3 5 28 9 33 imasvscaf φ N : S × B B
35 34 fovcld φ u S v B u N v B
36 simp-5l φ u S v B w B z V F z = w y V F y = v φ
37 simpllr φ u S v B w B z V F z = w u S v B w B
38 37 simp1d φ u S v B w B z V F z = w u S
39 38 ad2antrr φ u S v B w B z V F z = w y V F y = v u S
40 36 25 syl φ u S v B w B z V F z = w y V F y = v M Grp
41 simplr φ u S v B w B z V F z = w y V F y = v y V
42 simp-4r φ u S v B w B z V F z = w y V F y = v z V
43 2 4 grpcl M Grp y V z V y + ˙ z V
44 40 41 42 43 syl3anc φ u S v B w B z V F z = w y V F y = v y + ˙ z V
45 1 11 7 10 14 3 5 28 9 imasvscaval φ u S y + ˙ z V u N F y + ˙ z = F u · ˙ y + ˙ z
46 36 39 44 45 syl3anc φ u S v B w B z V F z = w y V F y = v u N F y + ˙ z = F u · ˙ y + ˙ z
47 eqid + N = + N
48 7 8 1 11 10 4 47 imasaddval φ y V z V F y + N F z = F y + ˙ z
49 36 41 42 48 syl3anc φ u S v B w B z V F z = w y V F y = v F y + N F z = F y + ˙ z
50 simpr φ u S v B w B z V F z = w y V F y = v F y = v
51 simpllr φ u S v B w B z V F z = w y V F y = v F z = w
52 50 51 oveq12d φ u S v B w B z V F z = w y V F y = v F y + N F z = v + N w
53 49 52 eqtr3d φ u S v B w B z V F z = w y V F y = v F y + ˙ z = v + N w
54 53 oveq2d φ u S v B w B z V F z = w y V F y = v u N F y + ˙ z = u N v + N w
55 36 10 syl φ u S v B w B z V F z = w y V F y = v M LMod
56 2 4 14 5 3 lmodvsdi M LMod u S y V z V u · ˙ y + ˙ z = u · ˙ y + ˙ u · ˙ z
57 55 39 41 42 56 syl13anc φ u S v B w B z V F z = w y V F y = v u · ˙ y + ˙ z = u · ˙ y + ˙ u · ˙ z
58 57 fveq2d φ u S v B w B z V F z = w y V F y = v F u · ˙ y + ˙ z = F u · ˙ y + ˙ u · ˙ z
59 46 54 58 3eqtr3d φ u S v B w B z V F z = w y V F y = v u N v + N w = F u · ˙ y + ˙ u · ˙ z
60 2 14 5 3 lmodvscl M LMod u S y V u · ˙ y V
61 55 39 41 60 syl3anc φ u S v B w B z V F z = w y V F y = v u · ˙ y V
62 2 14 5 3 lmodvscl M LMod u S z V u · ˙ z V
63 55 39 42 62 syl3anc φ u S v B w B z V F z = w y V F y = v u · ˙ z V
64 7 8 1 11 10 4 47 imasaddval φ u · ˙ y V u · ˙ z V F u · ˙ y + N F u · ˙ z = F u · ˙ y + ˙ u · ˙ z
65 36 61 63 64 syl3anc φ u S v B w B z V F z = w y V F y = v F u · ˙ y + N F u · ˙ z = F u · ˙ y + ˙ u · ˙ z
66 1 11 7 10 14 3 5 28 9 imasvscaval φ u S y V u N F y = F u · ˙ y
67 36 39 41 66 syl3anc φ u S v B w B z V F z = w y V F y = v u N F y = F u · ˙ y
68 50 oveq2d φ u S v B w B z V F z = w y V F y = v u N F y = u N v
69 67 68 eqtr3d φ u S v B w B z V F z = w y V F y = v F u · ˙ y = u N v
70 1 11 7 10 14 3 5 28 9 imasvscaval φ u S z V u N F z = F u · ˙ z
71 36 39 42 70 syl3anc φ u S v B w B z V F z = w y V F y = v u N F z = F u · ˙ z
72 51 oveq2d φ u S v B w B z V F z = w y V F y = v u N F z = u N w
73 71 72 eqtr3d φ u S v B w B z V F z = w y V F y = v F u · ˙ z = u N w
74 69 73 oveq12d φ u S v B w B z V F z = w y V F y = v F u · ˙ y + N F u · ˙ z = u N v + N u N w
75 59 65 74 3eqtr2d φ u S v B w B z V F z = w y V F y = v u N v + N w = u N v + N u N w
76 simplll φ u S v B w B z V F z = w φ
77 37 simp2d φ u S v B w B z V F z = w v B
78 fofn F : V onto B F Fn V
79 7 78 syl φ F Fn V
80 simpr φ v B v B
81 forn F : V onto B ran F = B
82 7 81 syl φ ran F = B
83 82 adantr φ v B ran F = B
84 80 83 eleqtrrd φ v B v ran F
85 fvelrnb F Fn V v ran F y V F y = v
86 85 biimpa F Fn V v ran F y V F y = v
87 79 84 86 syl2an2r φ v B y V F y = v
88 76 77 87 syl2anc φ u S v B w B z V F z = w y V F y = v
89 75 88 r19.29a φ u S v B w B z V F z = w u N v + N w = u N v + N u N w
90 simpr φ w B w B
91 82 adantr φ w B ran F = B
92 90 91 eleqtrrd φ w B w ran F
93 fvelrnb F Fn V w ran F z V F z = w
94 93 biimpa F Fn V w ran F z V F z = w
95 79 92 94 syl2an2r φ w B z V F z = w
96 95 3ad2antr3 φ u S v B w B z V F z = w
97 89 96 r19.29a φ u S v B w B u N v + N w = u N v + N u N w
98 simplll φ u S v S w B z V F z = w φ
99 10 ad3antrrr φ u S v S w B z V F z = w M LMod
100 simpllr φ u S v S w B z V F z = w u S v S w B
101 100 simp1d φ u S v S w B z V F z = w u S
102 100 simp2d φ u S v S w B z V F z = w v S
103 eqid + Scalar M = + Scalar M
104 14 3 103 lmodacl M LMod u S v S u + Scalar M v S
105 99 101 102 104 syl3anc φ u S v S w B z V F z = w u + Scalar M v S
106 simplr φ u S v S w B z V F z = w z V
107 1 11 7 10 14 3 5 28 9 imasvscaval φ u + Scalar M v S z V u + Scalar M v N F z = F u + Scalar M v · ˙ z
108 98 105 106 107 syl3anc φ u S v S w B z V F z = w u + Scalar M v N F z = F u + Scalar M v · ˙ z
109 simpr φ u S v S w B z V F z = w F z = w
110 109 oveq2d φ u S v S w B z V F z = w u + Scalar M v N F z = u + Scalar M v N w
111 2 4 14 5 3 103 lmodvsdir M LMod u S v S z V u + Scalar M v · ˙ z = u · ˙ z + ˙ v · ˙ z
112 99 101 102 106 111 syl13anc φ u S v S w B z V F z = w u + Scalar M v · ˙ z = u · ˙ z + ˙ v · ˙ z
113 112 fveq2d φ u S v S w B z V F z = w F u + Scalar M v · ˙ z = F u · ˙ z + ˙ v · ˙ z
114 99 101 106 62 syl3anc φ u S v S w B z V F z = w u · ˙ z V
115 2 14 5 3 lmodvscl M LMod v S z V v · ˙ z V
116 99 102 106 115 syl3anc φ u S v S w B z V F z = w v · ˙ z V
117 7 8 1 11 10 4 47 imasaddval φ u · ˙ z V v · ˙ z V F u · ˙ z + N F v · ˙ z = F u · ˙ z + ˙ v · ˙ z
118 98 114 116 117 syl3anc φ u S v S w B z V F z = w F u · ˙ z + N F v · ˙ z = F u · ˙ z + ˙ v · ˙ z
119 98 101 106 70 syl3anc φ u S v S w B z V F z = w u N F z = F u · ˙ z
120 109 oveq2d φ u S v S w B z V F z = w u N F z = u N w
121 119 120 eqtr3d φ u S v S w B z V F z = w F u · ˙ z = u N w
122 1 11 7 10 14 3 5 28 9 imasvscaval φ v S z V v N F z = F v · ˙ z
123 98 102 106 122 syl3anc φ u S v S w B z V F z = w v N F z = F v · ˙ z
124 109 oveq2d φ u S v S w B z V F z = w v N F z = v N w
125 123 124 eqtr3d φ u S v S w B z V F z = w F v · ˙ z = v N w
126 121 125 oveq12d φ u S v S w B z V F z = w F u · ˙ z + N F v · ˙ z = u N w + N v N w
127 113 118 126 3eqtr2d φ u S v S w B z V F z = w F u + Scalar M v · ˙ z = u N w + N v N w
128 108 110 127 3eqtr3d φ u S v S w B z V F z = w u + Scalar M v N w = u N w + N v N w
129 95 3ad2antr3 φ u S v S w B z V F z = w
130 128 129 r19.29a φ u S v S w B u + Scalar M v N w = u N w + N v N w
131 eqid Scalar M = Scalar M
132 14 3 131 lmodmcl M LMod u S v S u Scalar M v S
133 99 101 102 132 syl3anc φ u S v S w B z V F z = w u Scalar M v S
134 1 11 7 10 14 3 5 28 9 imasvscaval φ u Scalar M v S z V u Scalar M v N F z = F u Scalar M v · ˙ z
135 98 133 106 134 syl3anc φ u S v S w B z V F z = w u Scalar M v N F z = F u Scalar M v · ˙ z
136 109 oveq2d φ u S v S w B z V F z = w u Scalar M v N F z = u Scalar M v N w
137 1 11 7 10 14 3 5 28 9 imasvscaval φ u S v · ˙ z V u N F v · ˙ z = F u · ˙ v · ˙ z
138 98 101 116 137 syl3anc φ u S v S w B z V F z = w u N F v · ˙ z = F u · ˙ v · ˙ z
139 123 oveq2d φ u S v S w B z V F z = w u N v N F z = u N F v · ˙ z
140 2 14 5 3 131 lmodvsass M LMod u S v S z V u Scalar M v · ˙ z = u · ˙ v · ˙ z
141 99 101 102 106 140 syl13anc φ u S v S w B z V F z = w u Scalar M v · ˙ z = u · ˙ v · ˙ z
142 141 fveq2d φ u S v S w B z V F z = w F u Scalar M v · ˙ z = F u · ˙ v · ˙ z
143 138 139 142 3eqtr4rd φ u S v S w B z V F z = w F u Scalar M v · ˙ z = u N v N F z
144 135 136 143 3eqtr3d φ u S v S w B z V F z = w u Scalar M v N w = u N v N F z
145 124 oveq2d φ u S v S w B z V F z = w u N v N F z = u N v N w
146 144 145 eqtrd φ u S v S w B z V F z = w u Scalar M v N w = u N v N w
147 146 129 r19.29a φ u S v S w B u Scalar M v N w = u N v N w
148 simplll φ u B x V F x = u φ
149 eqid 1 Scalar M = 1 Scalar M
150 3 149 ringidcl Scalar M Ring 1 Scalar M S
151 22 150 syl φ 1 Scalar M S
152 151 ad3antrrr φ u B x V F x = u 1 Scalar M S
153 simplr φ u B x V F x = u x V
154 1 11 7 10 14 3 5 28 9 imasvscaval φ 1 Scalar M S x V 1 Scalar M N F x = F 1 Scalar M · ˙ x
155 148 152 153 154 syl3anc φ u B x V F x = u 1 Scalar M N F x = F 1 Scalar M · ˙ x
156 simpr φ u B x V F x = u F x = u
157 156 oveq2d φ u B x V F x = u 1 Scalar M N F x = 1 Scalar M N u
158 10 ad3antrrr φ u B x V F x = u M LMod
159 2 14 5 149 lmodvs1 M LMod x V 1 Scalar M · ˙ x = x
160 158 153 159 syl2anc φ u B x V F x = u 1 Scalar M · ˙ x = x
161 160 fveq2d φ u B x V F x = u F 1 Scalar M · ˙ x = F x
162 161 156 eqtrd φ u B x V F x = u F 1 Scalar M · ˙ x = u
163 155 157 162 3eqtr3d φ u B x V F x = u 1 Scalar M N u = u
164 simpr φ u B u B
165 82 adantr φ u B ran F = B
166 164 165 eleqtrrd φ u B u ran F
167 fvelrnb F Fn V u ran F x V F x = u
168 167 biimpa F Fn V u ran F x V F x = u
169 79 166 168 syl2an2r φ u B x V F x = u
170 163 169 r19.29a φ u B 1 Scalar M N u = u
171 12 13 15 16 17 18 19 20 22 27 35 97 130 147 170 islmodd φ N LMod