| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|
| 2 |
1
|
rpreccld |
|
| 3 |
2
|
rprege0d |
|
| 4 |
|
flge0nn0 |
|
| 5 |
|
nn0p1nn |
|
| 6 |
3 4 5
|
3syl |
|
| 7 |
|
irrapxlem4 |
|
| 8 |
6 7
|
syldan |
|
| 9 |
|
simplrr |
|
| 10 |
|
nnq |
|
| 11 |
9 10
|
syl |
|
| 12 |
|
simplrl |
|
| 13 |
|
nnq |
|
| 14 |
12 13
|
syl |
|
| 15 |
12
|
nnne0d |
|
| 16 |
|
qdivcl |
|
| 17 |
11 14 15 16
|
syl3anc |
|
| 18 |
9
|
nnrpd |
|
| 19 |
12
|
nnrpd |
|
| 20 |
18 19
|
rpdivcld |
|
| 21 |
20
|
rpgt0d |
|
| 22 |
12
|
nnred |
|
| 23 |
12
|
nnnn0d |
|
| 24 |
23
|
nn0ge0d |
|
| 25 |
22 24
|
absidd |
|
| 26 |
25
|
eqcomd |
|
| 27 |
26
|
oveq1d |
|
| 28 |
12
|
nncnd |
|
| 29 |
|
qre |
|
| 30 |
17 29
|
syl |
|
| 31 |
|
rpre |
|
| 32 |
31
|
ad3antrrr |
|
| 33 |
30 32
|
resubcld |
|
| 34 |
33
|
recnd |
|
| 35 |
28 34
|
absmuld |
|
| 36 |
27 35
|
eqtr4d |
|
| 37 |
|
qcn |
|
| 38 |
17 37
|
syl |
|
| 39 |
|
rpcn |
|
| 40 |
39
|
ad3antrrr |
|
| 41 |
28 38 40
|
subdid |
|
| 42 |
9
|
nncnd |
|
| 43 |
42 28 15
|
divcan2d |
|
| 44 |
28 40
|
mulcomd |
|
| 45 |
43 44
|
oveq12d |
|
| 46 |
41 45
|
eqtrd |
|
| 47 |
46
|
fveq2d |
|
| 48 |
32 22
|
remulcld |
|
| 49 |
48
|
recnd |
|
| 50 |
42 49
|
abssubd |
|
| 51 |
36 47 50
|
3eqtrd |
|
| 52 |
9
|
nnred |
|
| 53 |
48 52
|
resubcld |
|
| 54 |
53
|
recnd |
|
| 55 |
54
|
abscld |
|
| 56 |
|
simpllr |
|
| 57 |
56
|
rprecred |
|
| 58 |
56
|
rpreccld |
|
| 59 |
58
|
rpge0d |
|
| 60 |
57 59 4
|
syl2anc |
|
| 61 |
60 5
|
syl |
|
| 62 |
61
|
nnrpd |
|
| 63 |
62 19
|
ifcld |
|
| 64 |
63
|
rprecred |
|
| 65 |
56
|
rpred |
|
| 66 |
22 65
|
remulcld |
|
| 67 |
|
simpr |
|
| 68 |
58
|
rprecred |
|
| 69 |
61
|
nnred |
|
| 70 |
69 22
|
ifcld |
|
| 71 |
|
fllep1 |
|
| 72 |
57 71
|
syl |
|
| 73 |
|
max2 |
|
| 74 |
22 69 73
|
syl2anc |
|
| 75 |
57 69 70 72 74
|
letrd |
|
| 76 |
58 63
|
lerecd |
|
| 77 |
75 76
|
mpbid |
|
| 78 |
65
|
recnd |
|
| 79 |
56
|
rpne0d |
|
| 80 |
78 79
|
recrecd |
|
| 81 |
78
|
mullidd |
|
| 82 |
80 81
|
eqtr4d |
|
| 83 |
12
|
nnge1d |
|
| 84 |
|
1red |
|
| 85 |
84 22 56
|
lemul1d |
|
| 86 |
83 85
|
mpbid |
|
| 87 |
82 86
|
eqbrtrd |
|
| 88 |
64 68 66 77 87
|
letrd |
|
| 89 |
55 64 66 67 88
|
ltletrd |
|
| 90 |
51 89
|
eqbrtrd |
|
| 91 |
34
|
abscld |
|
| 92 |
12
|
nngt0d |
|
| 93 |
|
ltmul2 |
|
| 94 |
91 65 22 92 93
|
syl112anc |
|
| 95 |
90 94
|
mpbird |
|
| 96 |
22 22
|
remulcld |
|
| 97 |
22 15
|
msqgt0d |
|
| 98 |
97
|
gt0ne0d |
|
| 99 |
96 98
|
rereccld |
|
| 100 |
|
qdencl |
|
| 101 |
17 100
|
syl |
|
| 102 |
101
|
nnred |
|
| 103 |
102 102
|
remulcld |
|
| 104 |
101
|
nnne0d |
|
| 105 |
102 104
|
msqgt0d |
|
| 106 |
105
|
gt0ne0d |
|
| 107 |
103 106
|
rereccld |
|
| 108 |
22 15
|
rereccld |
|
| 109 |
|
max1 |
|
| 110 |
22 69 109
|
syl2anc |
|
| 111 |
19 63
|
lerecd |
|
| 112 |
110 111
|
mpbid |
|
| 113 |
55 64 108 67 112
|
ltletrd |
|
| 114 |
28 28 28 15 15
|
divdiv1d |
|
| 115 |
28 15
|
dividd |
|
| 116 |
115
|
oveq1d |
|
| 117 |
96
|
recnd |
|
| 118 |
28 117 98
|
divrecd |
|
| 119 |
114 116 118
|
3eqtr3rd |
|
| 120 |
113 51 119
|
3brtr4d |
|
| 121 |
|
ltmul2 |
|
| 122 |
91 99 22 92 121
|
syl112anc |
|
| 123 |
120 122
|
mpbird |
|
| 124 |
9
|
nnzd |
|
| 125 |
|
divdenle |
|
| 126 |
124 12 125
|
syl2anc |
|
| 127 |
101
|
nnnn0d |
|
| 128 |
127
|
nn0ge0d |
|
| 129 |
|
le2msq |
|
| 130 |
102 128 22 24 129
|
syl22anc |
|
| 131 |
126 130
|
mpbid |
|
| 132 |
|
lerec |
|
| 133 |
103 105 96 97 132
|
syl22anc |
|
| 134 |
131 133
|
mpbid |
|
| 135 |
91 99 107 123 134
|
ltletrd |
|
| 136 |
101
|
nncnd |
|
| 137 |
|
2nn0 |
|
| 138 |
|
expneg |
|
| 139 |
136 137 138
|
sylancl |
|
| 140 |
136
|
sqvald |
|
| 141 |
140
|
oveq2d |
|
| 142 |
139 141
|
eqtrd |
|
| 143 |
135 142
|
breqtrrd |
|
| 144 |
|
breq2 |
|
| 145 |
|
fvoveq1 |
|
| 146 |
145
|
breq1d |
|
| 147 |
|
fveq2 |
|
| 148 |
147
|
oveq1d |
|
| 149 |
145 148
|
breq12d |
|
| 150 |
144 146 149
|
3anbi123d |
|
| 151 |
150
|
rspcev |
|
| 152 |
17 21 95 143 151
|
syl13anc |
|
| 153 |
152
|
ex |
|
| 154 |
153
|
rexlimdvva |
|
| 155 |
8 154
|
mpd |
|