Metamath Proof Explorer


Theorem iscmet3lem2

Description: Lemma for iscmet3 . (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses iscmet3.1 Z=M
iscmet3.2 J=MetOpenD
iscmet3.3 φM
iscmet3.4 φDMetX
iscmet3.6 φF:ZX
iscmet3.9 φkuSkvSkuDv<12k
iscmet3.10 φkZnMkFkSn
iscmet3.7 φGFilX
iscmet3.8 φS:G
iscmet3.5 φFdomtJ
Assertion iscmet3lem2 φJfLimG

Proof

Step Hyp Ref Expression
1 iscmet3.1 Z=M
2 iscmet3.2 J=MetOpenD
3 iscmet3.3 φM
4 iscmet3.4 φDMetX
5 iscmet3.6 φF:ZX
6 iscmet3.9 φkuSkvSkuDv<12k
7 iscmet3.10 φkZnMkFkSn
8 iscmet3.7 φGFilX
9 iscmet3.8 φS:G
10 iscmet3.5 φFdomtJ
11 eldmg FdomtJFdomtJxFtJx
12 11 ibi FdomtJxFtJx
13 10 12 syl φxFtJx
14 metxmet DMetXD∞MetX
15 4 14 syl φD∞MetX
16 2 mopntopon D∞MetXJTopOnX
17 15 16 syl φJTopOnX
18 lmcl JTopOnXFtJxxX
19 17 18 sylan φFtJxxX
20 15 adantr φFtJxD∞MetX
21 2 mopni2 D∞MetXyJxyr+xballDry
22 21 3expia D∞MetXyJxyr+xballDry
23 20 22 sylan φFtJxyJxyr+xballDry
24 8 ad3antrrr φFtJxyJr+xballDryGFilX
25 3 ad2antrr φFtJxr+M
26 rphalfcl r+r2+
27 26 adantl φFtJxr+r2+
28 1 iscmet3lem3 Mr2+jZkj12k<r2
29 25 27 28 syl2anc φFtJxr+jZkj12k<r2
30 20 adantr φFtJxr+D∞MetX
31 19 adantr φFtJxr+xX
32 blcntr D∞MetXxXr2+xxballDr2
33 30 31 27 32 syl3anc φFtJxr+xxballDr2
34 simplr φFtJxr+FtJx
35 27 rpxrd φFtJxr+r2*
36 2 blopn D∞MetXxXr2*xballDr2J
37 30 31 35 36 syl3anc φFtJxr+xballDr2J
38 1 33 25 34 37 lmcvg φFtJxr+jZkjFkxballDr2
39 1 rexanuz2 jZkj12k<r2FkxballDr2jZkj12k<r2jZkjFkxballDr2
40 1 r19.2uz jZkj12k<r2FkxballDr2kZ12k<r2FkxballDr2
41 8 ad3antrrr φFtJxr+kZ12k<r2FkxballDr2GFilX
42 9 ad3antrrr φFtJxr+kZ12k<r2FkxballDr2S:G
43 eluzelz kMk
44 43 1 eleq2s kZk
45 44 ad2antrl φFtJxr+kZ12k<r2FkxballDr2k
46 ffvelcdm S:GkSkG
47 42 45 46 syl2anc φFtJxr+kZ12k<r2FkxballDr2SkG
48 rpxr r+r*
49 48 adantl φFtJxr+r*
50 blssm D∞MetXxXr*xballDrX
51 30 31 49 50 syl3anc φFtJxr+xballDrX
52 51 adantr φFtJxr+kZ12k<r2FkxballDr2xballDrX
53 44 adantl φFtJxr+kZk
54 1rp 1+
55 rphalfcl 1+12+
56 54 55 ax-mp 12+
57 rpexpcl 12+k12k+
58 56 57 mpan k12k+
59 53 58 syl φFtJxr+kZ12k+
60 59 rpred φFtJxr+kZ12k
61 27 adantr φFtJxr+kZr2+
62 61 rpred φFtJxr+kZr2
63 ltle 12kr212k<r212kr2
64 60 62 63 syl2anc φFtJxr+kZ12k<r212kr2
65 fveq2 n=kSn=Sk
66 65 eleq2d n=kFkSnFkSk
67 7 r19.21bi φkZnMkFkSn
68 eluzfz2 kMkMk
69 68 1 eleq2s kZkMk
70 69 adantl φkZkMk
71 66 67 70 rspcdva φkZFkSk
72 71 adantr φkZySkFkSk
73 simpr φkZySkySk
74 6 ad2antrr φkZySkkuSkvSkuDv<12k
75 44 ad2antlr φkZySkk
76 rsp kuSkvSkuDv<12kkuSkvSkuDv<12k
77 74 75 76 sylc φkZySkuSkvSkuDv<12k
78 oveq1 u=FkuDv=FkDv
79 78 breq1d u=FkuDv<12kFkDv<12k
80 oveq2 v=yFkDv=FkDy
81 80 breq1d v=yFkDv<12kFkDy<12k
82 79 81 rspc2va FkSkySkuSkvSkuDv<12kFkDy<12k
83 72 73 77 82 syl21anc φkZySkFkDy<12k
84 15 ad2antrr φkZySkD∞MetX
85 44 58 syl kZ12k+
86 85 rpxrd kZ12k*
87 86 ad2antlr φkZySk12k*
88 5 ffvelcdmda φkZFkX
89 88 adantr φkZySkFkX
90 8 adantr φkZGFilX
91 9 44 46 syl2an φkZSkG
92 filelss GFilXSkGSkX
93 90 91 92 syl2anc φkZSkX
94 93 sselda φkZySkyX
95 elbl2 D∞MetX12k*FkXyXyFkballD12kFkDy<12k
96 84 87 89 94 95 syl22anc φkZySkyFkballD12kFkDy<12k
97 83 96 mpbird φkZySkyFkballD12k
98 97 ex φkZySkyFkballD12k
99 98 ssrdv φkZSkFkballD12k
100 99 ad4ant14 φFtJxr+kZSkFkballD12k
101 30 adantr φFtJxr+kZD∞MetX
102 5 ad2antrr φFtJxr+F:ZX
103 102 ffvelcdmda φFtJxr+kZFkX
104 59 rpxrd φFtJxr+kZ12k*
105 35 adantr φFtJxr+kZr2*
106 ssbl D∞MetXFkX12k*r2*12kr2FkballD12kFkballDr2
107 106 3expia D∞MetXFkX12k*r2*12kr2FkballD12kFkballDr2
108 101 103 104 105 107 syl22anc φFtJxr+kZ12kr2FkballD12kFkballDr2
109 sstr SkFkballD12kFkballD12kFkballDr2SkFkballDr2
110 100 108 109 syl6an φFtJxr+kZ12kr2SkFkballDr2
111 64 110 syld φFtJxr+kZ12k<r2SkFkballDr2
112 111 adantrd φFtJxr+kZ12k<r2FkxballDr2SkFkballDr2
113 112 impr φFtJxr+kZ12k<r2FkxballDr2SkFkballDr2
114 31 adantr φFtJxr+kZxX
115 blcom D∞MetXr2*xXFkXFkxballDr2xFkballDr2
116 101 105 114 103 115 syl22anc φFtJxr+kZFkxballDr2xFkballDr2
117 rpre r+r
118 117 ad2antlr φFtJxr+kZr
119 blhalf D∞MetXFkXrxFkballDr2FkballDr2xballDr
120 119 expr D∞MetXFkXrxFkballDr2FkballDr2xballDr
121 101 103 118 120 syl21anc φFtJxr+kZxFkballDr2FkballDr2xballDr
122 116 121 sylbid φFtJxr+kZFkxballDr2FkballDr2xballDr
123 122 adantld φFtJxr+kZ12k<r2FkxballDr2FkballDr2xballDr
124 123 impr φFtJxr+kZ12k<r2FkxballDr2FkballDr2xballDr
125 113 124 sstrd φFtJxr+kZ12k<r2FkxballDr2SkxballDr
126 filss GFilXSkGxballDrXSkxballDrxballDrG
127 41 47 52 125 126 syl13anc φFtJxr+kZ12k<r2FkxballDr2xballDrG
128 127 rexlimdvaa φFtJxr+kZ12k<r2FkxballDr2xballDrG
129 40 128 syl5 φFtJxr+jZkj12k<r2FkxballDr2xballDrG
130 39 129 biimtrrid φFtJxr+jZkj12k<r2jZkjFkxballDr2xballDrG
131 29 38 130 mp2and φFtJxr+xballDrG
132 131 ad2ant2r φFtJxyJr+xballDryxballDrG
133 17 adantr φFtJxJTopOnX
134 toponss JTopOnXyJyX
135 133 134 sylan φFtJxyJyX
136 135 adantr φFtJxyJr+xballDryyX
137 simprr φFtJxyJr+xballDryxballDry
138 filss GFilXxballDrGyXxballDryyG
139 24 132 136 137 138 syl13anc φFtJxyJr+xballDryyG
140 139 rexlimdvaa φFtJxyJr+xballDryyG
141 23 140 syld φFtJxyJxyyG
142 141 ralrimiva φFtJxyJxyyG
143 flimopn JTopOnXGFilXxJfLimGxXyJxyyG
144 17 8 143 syl2anc φxJfLimGxXyJxyyG
145 144 adantr φFtJxxJfLimGxXyJxyyG
146 19 142 145 mpbir2and φFtJxxJfLimG
147 146 ne0d φFtJxJfLimG
148 13 147 exlimddv φJfLimG