Description: Determine if a ring is a field based on its ideals. (Contributed by Jeff Madsen, 10-Jun-2010)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isfldidl.1 | |
|
isfldidl.2 | |
||
isfldidl.3 | |
||
isfldidl.4 | |
||
isfldidl.5 | |
||
Assertion | isfldidl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfldidl.1 | |
|
2 | isfldidl.2 | |
|
3 | isfldidl.3 | |
|
4 | isfldidl.4 | |
|
5 | isfldidl.5 | |
|
6 | fldcrngo | |
|
7 | flddivrng | |
|
8 | 1 2 3 4 5 | dvrunz | |
9 | 7 8 | syl | |
10 | 1 2 3 4 | divrngidl | |
11 | 7 10 | syl | |
12 | 6 9 11 | 3jca | |
13 | crngorngo | |
|
14 | 13 | 3ad2ant1 | |
15 | simp2 | |
|
16 | 1 | rneqi | |
17 | 3 16 | eqtri | |
18 | 17 2 5 | rngo1cl | |
19 | 13 18 | syl | |
20 | 19 | ad2antrr | |
21 | eldif | |
|
22 | snssi | |
|
23 | 1 3 | igenss | |
24 | 22 23 | sylan2 | |
25 | vex | |
|
26 | 25 | snss | |
27 | 26 | biimpri | |
28 | eleq2 | |
|
29 | 27 28 | syl5ibcom | |
30 | 29 | con3dimp | |
31 | 24 30 | sylan | |
32 | 31 | anasss | |
33 | 21 32 | sylan2b | |
34 | 33 | adantlr | |
35 | eldifi | |
|
36 | 35 | snssd | |
37 | 1 3 | igenidl | |
38 | 36 37 | sylan2 | |
39 | eleq2 | |
|
40 | 38 39 | syl5ibcom | |
41 | 40 | imp | |
42 | 41 | an32s | |
43 | ovex | |
|
44 | 43 | elpr | |
45 | 42 44 | sylib | |
46 | 45 | ord | |
47 | 34 46 | mpd | |
48 | 13 47 | sylanl1 | |
49 | 1 2 3 | prnc | |
50 | 35 49 | sylan2 | |
51 | 50 | adantlr | |
52 | 48 51 | eqtr3d | |
53 | 20 52 | eleqtrd | |
54 | eqeq1 | |
|
55 | 54 | rexbidv | |
56 | 55 | elrab | |
57 | 53 56 | sylib | |
58 | 57 | simprd | |
59 | eqcom | |
|
60 | 59 | rexbii | |
61 | 58 60 | sylibr | |
62 | 61 | ralrimiva | |
63 | 62 | 3adant2 | |
64 | 14 15 63 | jca32 | |
65 | 1 2 4 3 5 | isdrngo3 | |
66 | 64 65 | sylibr | |
67 | simp1 | |
|
68 | isfld2 | |
|
69 | 66 67 68 | sylanbrc | |
70 | 12 69 | impbii | |