Metamath Proof Explorer


Theorem itsclquadb

Description: Quadratic equation for the y-coordinate of the intersection points of a line and a circle. (Contributed by AV, 22-Feb-2023)

Ref Expression
Hypotheses itsclquadb.q Q=A2+B2
itsclquadb.t T=2BC
itsclquadb.u U=C2A2R2
Assertion itsclquadb AA0BCR+Yxx2+Y2=R2Ax+BY=CQY2+TY+U=0

Proof

Step Hyp Ref Expression
1 itsclquadb.q Q=A2+B2
2 itsclquadb.t T=2BC
3 itsclquadb.u U=C2A2R2
4 simpl1 AA0BCR+YxAA0BC
5 simp2 AA0BCR+YR+
6 5 adantr AA0BCR+YxR+
7 simp3 AA0BCR+YY
8 7 anim1ci AA0BCR+YxxY
9 1 2 3 itscnhlc0yqe AA0BCR+xYx2+Y2=R2Ax+BY=CQY2+TY+U=0
10 4 6 8 9 syl3anc AA0BCR+Yxx2+Y2=R2Ax+BY=CQY2+TY+U=0
11 10 rexlimdva AA0BCR+Yxx2+Y2=R2Ax+BY=CQY2+TY+U=0
12 simp3 AA0BCC
13 12 3ad2ant1 AA0BCR+YC
14 simp2 AA0BCB
15 14 3ad2ant1 AA0BCR+YB
16 15 7 remulcld AA0BCR+YBY
17 13 16 resubcld AA0BCR+YCBY
18 simp11l AA0BCR+YA
19 simp11r AA0BCR+YA0
20 17 18 19 redivcld AA0BCR+YCBYA
21 20 adantr AA0BCR+YQY2+TY+U=0CBYA
22 oveq1 x=CBYAx2=CBYA2
23 22 oveq1d x=CBYAx2+Y2=CBYA2+Y2
24 23 eqeq1d x=CBYAx2+Y2=R2CBYA2+Y2=R2
25 oveq2 x=CBYAAx=ACBYA
26 25 oveq1d x=CBYAAx+BY=ACBYA+BY
27 26 eqeq1d x=CBYAAx+BY=CACBYA+BY=C
28 24 27 anbi12d x=CBYAx2+Y2=R2Ax+BY=CCBYA2+Y2=R2ACBYA+BY=C
29 28 adantl AA0BCR+YQY2+TY+U=0x=CBYAx2+Y2=R2Ax+BY=CCBYA2+Y2=R2ACBYA+BY=C
30 17 recnd AA0BCR+YCBY
31 18 recnd AA0BCR+YA
32 30 31 19 sqdivd AA0BCR+YCBYA2=CBY2A2
33 13 recnd AA0BCR+YC
34 16 recnd AA0BCR+YBY
35 binom2sub CBYCBY2=C2-2CBY+BY2
36 33 34 35 syl2anc AA0BCR+YCBY2=C2-2CBY+BY2
37 13 resqcld AA0BCR+YC2
38 37 recnd AA0BCR+YC2
39 2re 2
40 39 a1i AA0BCR+Y2
41 13 16 remulcld AA0BCR+YCBY
42 40 41 remulcld AA0BCR+Y2CBY
43 42 recnd AA0BCR+Y2CBY
44 38 43 negsubd AA0BCR+YC2+2CBY=C22CBY
45 15 recnd AA0BCR+YB
46 7 recnd AA0BCR+YY
47 33 45 46 mulassd AA0BCR+YCBY=CBY
48 47 eqcomd AA0BCR+YCBY=CBY
49 48 oveq2d AA0BCR+Y2CBY=2CBY
50 2cnd AA0BCR+Y2
51 13 15 remulcld AA0BCR+YCB
52 51 recnd AA0BCR+YCB
53 50 52 46 mulassd AA0BCR+Y2CBY=2CBY
54 53 eqcomd AA0BCR+Y2CBY=2CBY
55 33 45 mulcomd AA0BCR+YCB=BC
56 55 oveq2d AA0BCR+Y2CB=2BC
57 56 oveq1d AA0BCR+Y2CBY=2BCY
58 49 54 57 3eqtrd AA0BCR+Y2CBY=2BCY
59 58 negeqd AA0BCR+Y2CBY=2BCY
60 59 oveq2d AA0BCR+YC2+2CBY=C2+2BCY
61 44 60 eqtr3d AA0BCR+YC22CBY=C2+2BCY
62 45 46 sqmuld AA0BCR+YBY2=B2Y2
63 61 62 oveq12d AA0BCR+YC2-2CBY+BY2=C2+2BCY+B2Y2
64 15 13 remulcld AA0BCR+YBC
65 40 64 remulcld AA0BCR+Y2BC
66 65 recnd AA0BCR+Y2BC
67 66 46 mulneg1d AA0BCR+Y2BCY=2BCY
68 2 eqcomi 2BC=T
69 68 oveq1i 2BCY=TY
70 69 a1i AA0BCR+Y2BCY=TY
71 67 70 eqtr3d AA0BCR+Y2BCY=TY
72 71 oveq2d AA0BCR+YC2+2BCY=C2+TY
73 72 oveq1d AA0BCR+YC2+2BCY+B2Y2=C2+TY+B2Y2
74 36 63 73 3eqtrd AA0BCR+YCBY2=C2+TY+B2Y2
75 74 oveq1d AA0BCR+YCBY2A2=C2+TY+B2Y2A2
76 32 75 eqtrd AA0BCR+YCBYA2=C2+TY+B2Y2A2
77 resqcl YY2
78 77 recnd YY2
79 78 3ad2ant3 AA0BCR+YY2
80 18 resqcld AA0BCR+YA2
81 80 recnd AA0BCR+YA2
82 recn AA
83 sqne0 AA20A0
84 82 83 syl AA20A0
85 84 biimpar AA0A20
86 85 3ad2ant1 AA0BCA20
87 86 3ad2ant1 AA0BCR+YA20
88 79 81 87 divcan2d AA0BCR+YA2Y2A2=Y2
89 88 eqcomd AA0BCR+YY2=A2Y2A2
90 76 89 oveq12d AA0BCR+YCBYA2+Y2=C2+TY+B2Y2A2+A2Y2A2
91 81 79 81 87 divassd AA0BCR+YA2Y2A2=A2Y2A2
92 91 eqcomd AA0BCR+YA2Y2A2=A2Y2A2
93 92 oveq2d AA0BCR+YC2+TY+B2Y2A2+A2Y2A2=C2+TY+B2Y2A2+A2Y2A2
94 65 renegcld AA0BCR+Y2BC
95 2 94 eqeltrid AA0BCR+YT
96 95 7 remulcld AA0BCR+YTY
97 37 96 readdcld AA0BCR+YC2+TY
98 15 resqcld AA0BCR+YB2
99 7 resqcld AA0BCR+YY2
100 98 99 remulcld AA0BCR+YB2Y2
101 97 100 readdcld AA0BCR+YC2+TY+B2Y2
102 101 recnd AA0BCR+YC2+TY+B2Y2
103 80 99 remulcld AA0BCR+YA2Y2
104 103 recnd AA0BCR+YA2Y2
105 102 104 81 87 divdird AA0BCR+YC2+TY+B2Y2+A2Y2A2=C2+TY+B2Y2A2+A2Y2A2
106 105 eqcomd AA0BCR+YC2+TY+B2Y2A2+A2Y2A2=C2+TY+B2Y2+A2Y2A2
107 90 93 106 3eqtrd AA0BCR+YCBYA2+Y2=C2+TY+B2Y2+A2Y2A2
108 107 adantr AA0BCR+YQY2+TY+U=0CBYA2+Y2=C2+TY+B2Y2+A2Y2A2
109 97 recnd AA0BCR+YC2+TY
110 100 recnd AA0BCR+YB2Y2
111 109 110 104 addassd AA0BCR+YC2+TY+B2Y2+A2Y2=C2+TY+B2Y2+A2Y2
112 98 recnd AA0BCR+YB2
113 99 recnd AA0BCR+YY2
114 112 81 113 adddird AA0BCR+YB2+A2Y2=B2Y2+A2Y2
115 112 81 addcomd AA0BCR+YB2+A2=A2+B2
116 115 oveq1d AA0BCR+YB2+A2Y2=A2+B2Y2
117 114 116 eqtr3d AA0BCR+YB2Y2+A2Y2=A2+B2Y2
118 117 oveq2d AA0BCR+YC2+TY+B2Y2+A2Y2=C2+TY+A2+B2Y2
119 96 recnd AA0BCR+YTY
120 80 98 readdcld AA0BCR+YA2+B2
121 120 99 remulcld AA0BCR+YA2+B2Y2
122 121 recnd AA0BCR+YA2+B2Y2
123 38 119 122 addassd AA0BCR+YC2+TY+A2+B2Y2=C2+TY+A2+B2Y2
124 119 122 addcomd AA0BCR+YTY+A2+B2Y2=A2+B2Y2+TY
125 124 oveq2d AA0BCR+YC2+TY+A2+B2Y2=C2+A2+B2Y2+TY
126 123 125 eqtrd AA0BCR+YC2+TY+A2+B2Y2=C2+A2+B2Y2+TY
127 111 118 126 3eqtrd AA0BCR+YC2+TY+B2Y2+A2Y2=C2+A2+B2Y2+TY
128 127 adantr AA0BCR+YQY2+TY+U=0C2+TY+B2Y2+A2Y2=C2+A2+B2Y2+TY
129 128 oveq1d AA0BCR+YQY2+TY+U=0C2+TY+B2Y2+A2Y2A2=C2+A2+B2Y2+TYA2
130 1 oveq1i QY2=A2+B2Y2
131 3 oveq2i TY+U=TY+C2-A2R2
132 130 131 oveq12i QY2+TY+U=A2+B2Y2+TY+C2A2R2
133 rpre R+R
134 133 resqcld R+R2
135 134 3ad2ant2 AA0BCR+YR2
136 80 135 remulcld AA0BCR+YA2R2
137 37 136 resubcld AA0BCR+YC2A2R2
138 137 recnd AA0BCR+YC2A2R2
139 122 119 138 addassd AA0BCR+YA2+B2Y2+TY+C2A2R2=A2+B2Y2+TY+C2A2R2
140 132 139 eqtr4id AA0BCR+YQY2+TY+U=A2+B2Y2+TY+C2A2R2
141 140 eqeq1d AA0BCR+YQY2+TY+U=0A2+B2Y2+TY+C2A2R2=0
142 121 96 readdcld AA0BCR+YA2+B2Y2+TY
143 142 recnd AA0BCR+YA2+B2Y2+TY
144 addeq0 A2+B2Y2+TYC2A2R2A2+B2Y2+TY+C2A2R2=0A2+B2Y2+TY=C2A2R2
145 143 138 144 syl2anc AA0BCR+YA2+B2Y2+TY+C2A2R2=0A2+B2Y2+TY=C2A2R2
146 141 145 bitrd AA0BCR+YQY2+TY+U=0A2+B2Y2+TY=C2A2R2
147 oveq2 A2+B2Y2+TY=C2A2R2C2+A2+B2Y2+TY=C2+C2A2R2
148 147 oveq1d A2+B2Y2+TY=C2A2R2C2+A2+B2Y2+TYA2=C2+C2A2R2A2
149 38 138 negsubd AA0BCR+YC2+C2A2R2=C2C2A2R2
150 136 recnd AA0BCR+YA2R2
151 38 150 nncand AA0BCR+YC2C2A2R2=A2R2
152 149 151 eqtrd AA0BCR+YC2+C2A2R2=A2R2
153 152 oveq1d AA0BCR+YC2+C2A2R2A2=A2R2A2
154 135 recnd AA0BCR+YR2
155 154 81 87 divcan3d AA0BCR+YA2R2A2=R2
156 153 155 eqtrd AA0BCR+YC2+C2A2R2A2=R2
157 148 156 sylan9eqr AA0BCR+YA2+B2Y2+TY=C2A2R2C2+A2+B2Y2+TYA2=R2
158 157 ex AA0BCR+YA2+B2Y2+TY=C2A2R2C2+A2+B2Y2+TYA2=R2
159 146 158 sylbid AA0BCR+YQY2+TY+U=0C2+A2+B2Y2+TYA2=R2
160 159 imp AA0BCR+YQY2+TY+U=0C2+A2+B2Y2+TYA2=R2
161 108 129 160 3eqtrd AA0BCR+YQY2+TY+U=0CBYA2+Y2=R2
162 30 31 19 divcan2d AA0BCR+YACBYA=CBY
163 162 oveq1d AA0BCR+YACBYA+BY=C-BY+BY
164 33 34 npcand AA0BCR+YC-BY+BY=C
165 163 164 eqtrd AA0BCR+YACBYA+BY=C
166 165 adantr AA0BCR+YQY2+TY+U=0ACBYA+BY=C
167 161 166 jca AA0BCR+YQY2+TY+U=0CBYA2+Y2=R2ACBYA+BY=C
168 21 29 167 rspcedvd AA0BCR+YQY2+TY+U=0xx2+Y2=R2Ax+BY=C
169 168 ex AA0BCR+YQY2+TY+U=0xx2+Y2=R2Ax+BY=C
170 11 169 impbid AA0BCR+Yxx2+Y2=R2Ax+BY=CQY2+TY+U=0