| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itsclquadb.q |
|
| 2 |
|
itsclquadb.t |
|
| 3 |
|
itsclquadb.u |
|
| 4 |
|
simpl1 |
|
| 5 |
|
simp2 |
|
| 6 |
5
|
adantr |
|
| 7 |
|
simp3 |
|
| 8 |
7
|
anim1ci |
|
| 9 |
1 2 3
|
itscnhlc0yqe |
|
| 10 |
4 6 8 9
|
syl3anc |
|
| 11 |
10
|
rexlimdva |
|
| 12 |
|
simp3 |
|
| 13 |
12
|
3ad2ant1 |
|
| 14 |
|
simp2 |
|
| 15 |
14
|
3ad2ant1 |
|
| 16 |
15 7
|
remulcld |
|
| 17 |
13 16
|
resubcld |
|
| 18 |
|
simp11l |
|
| 19 |
|
simp11r |
|
| 20 |
17 18 19
|
redivcld |
|
| 21 |
20
|
adantr |
|
| 22 |
|
oveq1 |
|
| 23 |
22
|
oveq1d |
|
| 24 |
23
|
eqeq1d |
|
| 25 |
|
oveq2 |
|
| 26 |
25
|
oveq1d |
|
| 27 |
26
|
eqeq1d |
|
| 28 |
24 27
|
anbi12d |
|
| 29 |
28
|
adantl |
|
| 30 |
17
|
recnd |
|
| 31 |
18
|
recnd |
|
| 32 |
30 31 19
|
sqdivd |
|
| 33 |
13
|
recnd |
|
| 34 |
16
|
recnd |
|
| 35 |
|
binom2sub |
|
| 36 |
33 34 35
|
syl2anc |
|
| 37 |
13
|
resqcld |
|
| 38 |
37
|
recnd |
|
| 39 |
|
2re |
|
| 40 |
39
|
a1i |
|
| 41 |
13 16
|
remulcld |
|
| 42 |
40 41
|
remulcld |
|
| 43 |
42
|
recnd |
|
| 44 |
38 43
|
negsubd |
|
| 45 |
15
|
recnd |
|
| 46 |
7
|
recnd |
|
| 47 |
33 45 46
|
mulassd |
|
| 48 |
47
|
eqcomd |
|
| 49 |
48
|
oveq2d |
|
| 50 |
|
2cnd |
|
| 51 |
13 15
|
remulcld |
|
| 52 |
51
|
recnd |
|
| 53 |
50 52 46
|
mulassd |
|
| 54 |
53
|
eqcomd |
|
| 55 |
33 45
|
mulcomd |
|
| 56 |
55
|
oveq2d |
|
| 57 |
56
|
oveq1d |
|
| 58 |
49 54 57
|
3eqtrd |
|
| 59 |
58
|
negeqd |
|
| 60 |
59
|
oveq2d |
|
| 61 |
44 60
|
eqtr3d |
|
| 62 |
45 46
|
sqmuld |
|
| 63 |
61 62
|
oveq12d |
|
| 64 |
15 13
|
remulcld |
|
| 65 |
40 64
|
remulcld |
|
| 66 |
65
|
recnd |
|
| 67 |
66 46
|
mulneg1d |
|
| 68 |
2
|
eqcomi |
|
| 69 |
68
|
oveq1i |
|
| 70 |
69
|
a1i |
|
| 71 |
67 70
|
eqtr3d |
|
| 72 |
71
|
oveq2d |
|
| 73 |
72
|
oveq1d |
|
| 74 |
36 63 73
|
3eqtrd |
|
| 75 |
74
|
oveq1d |
|
| 76 |
32 75
|
eqtrd |
|
| 77 |
|
resqcl |
|
| 78 |
77
|
recnd |
|
| 79 |
78
|
3ad2ant3 |
|
| 80 |
18
|
resqcld |
|
| 81 |
80
|
recnd |
|
| 82 |
|
recn |
|
| 83 |
|
sqne0 |
|
| 84 |
82 83
|
syl |
|
| 85 |
84
|
biimpar |
|
| 86 |
85
|
3ad2ant1 |
|
| 87 |
86
|
3ad2ant1 |
|
| 88 |
79 81 87
|
divcan2d |
|
| 89 |
88
|
eqcomd |
|
| 90 |
76 89
|
oveq12d |
|
| 91 |
81 79 81 87
|
divassd |
|
| 92 |
91
|
eqcomd |
|
| 93 |
92
|
oveq2d |
|
| 94 |
65
|
renegcld |
|
| 95 |
2 94
|
eqeltrid |
|
| 96 |
95 7
|
remulcld |
|
| 97 |
37 96
|
readdcld |
|
| 98 |
15
|
resqcld |
|
| 99 |
7
|
resqcld |
|
| 100 |
98 99
|
remulcld |
|
| 101 |
97 100
|
readdcld |
|
| 102 |
101
|
recnd |
|
| 103 |
80 99
|
remulcld |
|
| 104 |
103
|
recnd |
|
| 105 |
102 104 81 87
|
divdird |
|
| 106 |
105
|
eqcomd |
|
| 107 |
90 93 106
|
3eqtrd |
|
| 108 |
107
|
adantr |
|
| 109 |
97
|
recnd |
|
| 110 |
100
|
recnd |
|
| 111 |
109 110 104
|
addassd |
|
| 112 |
98
|
recnd |
|
| 113 |
99
|
recnd |
|
| 114 |
112 81 113
|
adddird |
|
| 115 |
112 81
|
addcomd |
|
| 116 |
115
|
oveq1d |
|
| 117 |
114 116
|
eqtr3d |
|
| 118 |
117
|
oveq2d |
|
| 119 |
96
|
recnd |
|
| 120 |
80 98
|
readdcld |
|
| 121 |
120 99
|
remulcld |
|
| 122 |
121
|
recnd |
|
| 123 |
38 119 122
|
addassd |
|
| 124 |
119 122
|
addcomd |
|
| 125 |
124
|
oveq2d |
|
| 126 |
123 125
|
eqtrd |
|
| 127 |
111 118 126
|
3eqtrd |
|
| 128 |
127
|
adantr |
|
| 129 |
128
|
oveq1d |
|
| 130 |
1
|
oveq1i |
|
| 131 |
3
|
oveq2i |
|
| 132 |
130 131
|
oveq12i |
|
| 133 |
|
rpre |
|
| 134 |
133
|
resqcld |
|
| 135 |
134
|
3ad2ant2 |
|
| 136 |
80 135
|
remulcld |
|
| 137 |
37 136
|
resubcld |
|
| 138 |
137
|
recnd |
|
| 139 |
122 119 138
|
addassd |
|
| 140 |
132 139
|
eqtr4id |
|
| 141 |
140
|
eqeq1d |
|
| 142 |
121 96
|
readdcld |
|
| 143 |
142
|
recnd |
|
| 144 |
|
addeq0 |
|
| 145 |
143 138 144
|
syl2anc |
|
| 146 |
141 145
|
bitrd |
|
| 147 |
|
oveq2 |
|
| 148 |
147
|
oveq1d |
|
| 149 |
38 138
|
negsubd |
|
| 150 |
136
|
recnd |
|
| 151 |
38 150
|
nncand |
|
| 152 |
149 151
|
eqtrd |
|
| 153 |
152
|
oveq1d |
|
| 154 |
135
|
recnd |
|
| 155 |
154 81 87
|
divcan3d |
|
| 156 |
153 155
|
eqtrd |
|
| 157 |
148 156
|
sylan9eqr |
|
| 158 |
157
|
ex |
|
| 159 |
146 158
|
sylbid |
|
| 160 |
159
|
imp |
|
| 161 |
108 129 160
|
3eqtrd |
|
| 162 |
30 31 19
|
divcan2d |
|
| 163 |
162
|
oveq1d |
|
| 164 |
33 34
|
npcand |
|
| 165 |
163 164
|
eqtrd |
|
| 166 |
165
|
adantr |
|
| 167 |
161 166
|
jca |
|
| 168 |
21 29 167
|
rspcedvd |
|
| 169 |
168
|
ex |
|
| 170 |
11 169
|
impbid |
|