| Step |
Hyp |
Ref |
Expression |
| 1 |
|
omex |
|
| 2 |
1
|
0dom |
|
| 3 |
|
breq1 |
|
| 4 |
2 3
|
mpbiri |
|
| 5 |
4
|
a1d |
|
| 6 |
|
n0 |
|
| 7 |
|
ne0i |
|
| 8 |
|
unieq |
|
| 9 |
|
uni0 |
|
| 10 |
8 9
|
eqtrdi |
|
| 11 |
10
|
necon3i |
|
| 12 |
7 11
|
syl |
|
| 13 |
12
|
adantl |
|
| 14 |
|
simpl1 |
|
| 15 |
|
ctex |
|
| 16 |
|
0sdomg |
|
| 17 |
14 15 16
|
3syl |
|
| 18 |
13 17
|
mpbird |
|
| 19 |
|
fodomr |
|
| 20 |
18 14 19
|
syl2anc |
|
| 21 |
|
omelon |
|
| 22 |
|
onenon |
|
| 23 |
21 22
|
ax-mp |
|
| 24 |
|
xpnum |
|
| 25 |
23 23 24
|
mp2an |
|
| 26 |
|
simplrr |
|
| 27 |
|
fof |
|
| 28 |
26 27
|
syl |
|
| 29 |
|
simprl |
|
| 30 |
28 29
|
ffvelcdmd |
|
| 31 |
30
|
adantr |
|
| 32 |
|
elssuni |
|
| 33 |
31 32
|
syl |
|
| 34 |
30 32
|
syl |
|
| 35 |
|
simpll3 |
|
| 36 |
|
soss |
|
| 37 |
34 35 36
|
sylc |
|
| 38 |
|
simpll2 |
|
| 39 |
38 30
|
sseldd |
|
| 40 |
|
finnisoeu |
|
| 41 |
37 39 40
|
syl2anc |
|
| 42 |
|
iotacl |
|
| 43 |
41 42
|
syl |
|
| 44 |
|
iotaex |
|
| 45 |
|
isoeq1 |
|
| 46 |
|
isoeq1 |
|
| 47 |
46
|
cbvabv |
|
| 48 |
44 45 47
|
elab2 |
|
| 49 |
43 48
|
sylib |
|
| 50 |
|
isof1o |
|
| 51 |
|
f1of |
|
| 52 |
49 50 51
|
3syl |
|
| 53 |
52
|
ffvelcdmda |
|
| 54 |
33 53
|
sseldd |
|
| 55 |
|
simprl |
|
| 56 |
55
|
ad2antrr |
|
| 57 |
54 56
|
ifclda |
|
| 58 |
57
|
ralrimivva |
|
| 59 |
|
eqid |
|
| 60 |
59
|
fmpo |
|
| 61 |
58 60
|
sylib |
|
| 62 |
|
eluni |
|
| 63 |
|
simplrr |
|
| 64 |
|
simprr |
|
| 65 |
|
foelrn |
|
| 66 |
63 64 65
|
syl2anc |
|
| 67 |
|
simprrl |
|
| 68 |
|
ordom |
|
| 69 |
|
simpll2 |
|
| 70 |
|
simplrr |
|
| 71 |
70 27
|
syl |
|
| 72 |
71 67
|
ffvelcdmd |
|
| 73 |
69 72
|
sseldd |
|
| 74 |
|
ficardom |
|
| 75 |
73 74
|
syl |
|
| 76 |
|
ordelss |
|
| 77 |
68 75 76
|
sylancr |
|
| 78 |
|
elssuni |
|
| 79 |
72 78
|
syl |
|
| 80 |
|
simpll3 |
|
| 81 |
|
soss |
|
| 82 |
79 80 81
|
sylc |
|
| 83 |
|
finnisoeu |
|
| 84 |
82 73 83
|
syl2anc |
|
| 85 |
|
iotacl |
|
| 86 |
84 85
|
syl |
|
| 87 |
|
iotaex |
|
| 88 |
|
isoeq1 |
|
| 89 |
|
isoeq1 |
|
| 90 |
89
|
cbvabv |
|
| 91 |
87 88 90
|
elab2 |
|
| 92 |
86 91
|
sylib |
|
| 93 |
|
isof1o |
|
| 94 |
92 93
|
syl |
|
| 95 |
|
f1ocnv |
|
| 96 |
|
f1of |
|
| 97 |
94 95 96
|
3syl |
|
| 98 |
|
simprll |
|
| 99 |
|
simprrr |
|
| 100 |
98 99
|
eleqtrd |
|
| 101 |
97 100
|
ffvelcdmd |
|
| 102 |
77 101
|
sseldd |
|
| 103 |
|
2fveq3 |
|
| 104 |
103
|
eleq2d |
|
| 105 |
|
isoeq4 |
|
| 106 |
103 105
|
syl |
|
| 107 |
|
fveq2 |
|
| 108 |
|
isoeq5 |
|
| 109 |
107 108
|
syl |
|
| 110 |
106 109
|
bitrd |
|
| 111 |
110
|
iotabidv |
|
| 112 |
111
|
fveq1d |
|
| 113 |
104 112
|
ifbieq1d |
|
| 114 |
|
eleq1 |
|
| 115 |
|
fveq2 |
|
| 116 |
114 115
|
ifbieq1d |
|
| 117 |
|
fvex |
|
| 118 |
|
vex |
|
| 119 |
117 118
|
ifex |
|
| 120 |
113 116 59 119
|
ovmpo |
|
| 121 |
67 102 120
|
syl2anc |
|
| 122 |
101
|
iftrued |
|
| 123 |
|
f1ocnvfv2 |
|
| 124 |
94 100 123
|
syl2anc |
|
| 125 |
121 122 124
|
3eqtrrd |
|
| 126 |
|
rspceov |
|
| 127 |
67 102 125 126
|
syl3anc |
|
| 128 |
127
|
expr |
|
| 129 |
128
|
expd |
|
| 130 |
129
|
rexlimdv |
|
| 131 |
66 130
|
mpd |
|
| 132 |
131
|
ex |
|
| 133 |
132
|
exlimdv |
|
| 134 |
62 133
|
biimtrid |
|
| 135 |
134
|
ralrimiv |
|
| 136 |
|
foov |
|
| 137 |
61 135 136
|
sylanbrc |
|
| 138 |
|
fodomnum |
|
| 139 |
25 137 138
|
mpsyl |
|
| 140 |
|
xpomen |
|
| 141 |
|
domentr |
|
| 142 |
139 140 141
|
sylancl |
|
| 143 |
142
|
expr |
|
| 144 |
143
|
exlimdv |
|
| 145 |
20 144
|
mpd |
|
| 146 |
145
|
expcom |
|
| 147 |
146
|
exlimiv |
|
| 148 |
6 147
|
sylbi |
|
| 149 |
5 148
|
pm2.61ine |
|