Metamath Proof Explorer


Theorem iunfictbso

Description: Countability of a countable union of finite sets with a strict (not globally well) order fulfilling the choice role. (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Assertion iunfictbso AωAFinBOrAAω

Proof

Step Hyp Ref Expression
1 omex ωV
2 1 0dom ω
3 breq1 A=Aωω
4 2 3 mpbiri A=Aω
5 4 a1d A=AωAFinBOrAAω
6 n0 AaaA
7 ne0i aAA
8 unieq A=A=
9 uni0 =
10 8 9 eqtrdi A=A=
11 10 necon3i AA
12 7 11 syl aAA
13 12 adantl AωAFinBOrAaAA
14 simpl1 AωAFinBOrAaAAω
15 ctex AωAV
16 0sdomg AVAA
17 14 15 16 3syl AωAFinBOrAaAAA
18 13 17 mpbird AωAFinBOrAaAA
19 fodomr AAωbb:ωontoA
20 18 14 19 syl2anc AωAFinBOrAaAbb:ωontoA
21 omelon ωOn
22 onenon ωOnωdomcard
23 21 22 ax-mp ωdomcard
24 xpnum ωdomcardωdomcardω×ωdomcard
25 23 23 24 mp2an ω×ωdomcard
26 simplrr AωAFinBOrAaAb:ωontoAfωgωb:ωontoA
27 fof b:ωontoAb:ωA
28 26 27 syl AωAFinBOrAaAb:ωontoAfωgωb:ωA
29 simprl AωAFinBOrAaAb:ωontoAfωgωfω
30 28 29 ffvelcdmd AωAFinBOrAaAb:ωontoAfωgωbfA
31 30 adantr AωAFinBOrAaAb:ωontoAfωgωgcardbfbfA
32 elssuni bfAbfA
33 31 32 syl AωAFinBOrAaAb:ωontoAfωgωgcardbfbfA
34 30 32 syl AωAFinBOrAaAb:ωontoAfωgωbfA
35 simpll3 AωAFinBOrAaAb:ωontoAfωgωBOrA
36 soss bfABOrABOrbf
37 34 35 36 sylc AωAFinBOrAaAb:ωontoAfωgωBOrbf
38 simpll2 AωAFinBOrAaAb:ωontoAfωgωAFin
39 38 30 sseldd AωAFinBOrAaAb:ωontoAfωgωbfFin
40 finnisoeu BOrbfbfFin∃!hhIsomE,Bcardbfbf
41 37 39 40 syl2anc AωAFinBOrAaAb:ωontoAfωgω∃!hhIsomE,Bcardbfbf
42 iotacl ∃!hhIsomE,Bcardbfbfιh|hIsomE,Bcardbfbfh|hIsomE,Bcardbfbf
43 41 42 syl AωAFinBOrAaAb:ωontoAfωgωιh|hIsomE,Bcardbfbfh|hIsomE,Bcardbfbf
44 iotaex ιh|hIsomE,BcardbfbfV
45 isoeq1 a=ιh|hIsomE,BcardbfbfaIsomE,Bcardbfbfιh|hIsomE,BcardbfbfIsomE,Bcardbfbf
46 isoeq1 h=ahIsomE,BcardbfbfaIsomE,Bcardbfbf
47 46 cbvabv h|hIsomE,Bcardbfbf=a|aIsomE,Bcardbfbf
48 44 45 47 elab2 ιh|hIsomE,Bcardbfbfh|hIsomE,Bcardbfbfιh|hIsomE,BcardbfbfIsomE,Bcardbfbf
49 43 48 sylib AωAFinBOrAaAb:ωontoAfωgωιh|hIsomE,BcardbfbfIsomE,Bcardbfbf
50 isof1o ιh|hIsomE,BcardbfbfIsomE,Bcardbfbfιh|hIsomE,Bcardbfbf:cardbf1-1 ontobf
51 f1of ιh|hIsomE,Bcardbfbf:cardbf1-1 ontobfιh|hIsomE,Bcardbfbf:cardbfbf
52 49 50 51 3syl AωAFinBOrAaAb:ωontoAfωgωιh|hIsomE,Bcardbfbf:cardbfbf
53 52 ffvelcdmda AωAFinBOrAaAb:ωontoAfωgωgcardbfιh|hIsomE,Bcardbfbfgbf
54 33 53 sseldd AωAFinBOrAaAb:ωontoAfωgωgcardbfιh|hIsomE,BcardbfbfgA
55 simprl AωAFinBOrAaAb:ωontoAaA
56 55 ad2antrr AωAFinBOrAaAb:ωontoAfωgω¬gcardbfaA
57 54 56 ifclda AωAFinBOrAaAb:ωontoAfωgωifgcardbfιh|hIsomE,BcardbfbfgaA
58 57 ralrimivva AωAFinBOrAaAb:ωontoAfωgωifgcardbfιh|hIsomE,BcardbfbfgaA
59 eqid fω,gωifgcardbfιh|hIsomE,Bcardbfbfga=fω,gωifgcardbfιh|hIsomE,Bcardbfbfga
60 59 fmpo fωgωifgcardbfιh|hIsomE,BcardbfbfgaAfω,gωifgcardbfιh|hIsomE,Bcardbfbfga:ω×ωA
61 58 60 sylib AωAFinBOrAaAb:ωontoAfω,gωifgcardbfιh|hIsomE,Bcardbfbfga:ω×ωA
62 eluni cAiciiA
63 simplrr AωAFinBOrAaAb:ωontoAciiAb:ωontoA
64 simprr AωAFinBOrAaAb:ωontoAciiAiA
65 foelrn b:ωontoAiAjωi=bj
66 63 64 65 syl2anc AωAFinBOrAaAb:ωontoAciiAjωi=bj
67 simprrl AωAFinBOrAaAb:ωontoAciiAjωi=bjjω
68 ordom Ordω
69 simpll2 AωAFinBOrAaAb:ωontoAciiAjωi=bjAFin
70 simplrr AωAFinBOrAaAb:ωontoAciiAjωi=bjb:ωontoA
71 70 27 syl AωAFinBOrAaAb:ωontoAciiAjωi=bjb:ωA
72 71 67 ffvelcdmd AωAFinBOrAaAb:ωontoAciiAjωi=bjbjA
73 69 72 sseldd AωAFinBOrAaAb:ωontoAciiAjωi=bjbjFin
74 ficardom bjFincardbjω
75 73 74 syl AωAFinBOrAaAb:ωontoAciiAjωi=bjcardbjω
76 ordelss Ordωcardbjωcardbjω
77 68 75 76 sylancr AωAFinBOrAaAb:ωontoAciiAjωi=bjcardbjω
78 elssuni bjAbjA
79 72 78 syl AωAFinBOrAaAb:ωontoAciiAjωi=bjbjA
80 simpll3 AωAFinBOrAaAb:ωontoAciiAjωi=bjBOrA
81 soss bjABOrABOrbj
82 79 80 81 sylc AωAFinBOrAaAb:ωontoAciiAjωi=bjBOrbj
83 finnisoeu BOrbjbjFin∃!hhIsomE,Bcardbjbj
84 82 73 83 syl2anc AωAFinBOrAaAb:ωontoAciiAjωi=bj∃!hhIsomE,Bcardbjbj
85 iotacl ∃!hhIsomE,Bcardbjbjιh|hIsomE,Bcardbjbjh|hIsomE,Bcardbjbj
86 84 85 syl AωAFinBOrAaAb:ωontoAciiAjωi=bjιh|hIsomE,Bcardbjbjh|hIsomE,Bcardbjbj
87 iotaex ιh|hIsomE,BcardbjbjV
88 isoeq1 a=ιh|hIsomE,BcardbjbjaIsomE,Bcardbjbjιh|hIsomE,BcardbjbjIsomE,Bcardbjbj
89 isoeq1 h=ahIsomE,BcardbjbjaIsomE,Bcardbjbj
90 89 cbvabv h|hIsomE,Bcardbjbj=a|aIsomE,Bcardbjbj
91 87 88 90 elab2 ιh|hIsomE,Bcardbjbjh|hIsomE,Bcardbjbjιh|hIsomE,BcardbjbjIsomE,Bcardbjbj
92 86 91 sylib AωAFinBOrAaAb:ωontoAciiAjωi=bjιh|hIsomE,BcardbjbjIsomE,Bcardbjbj
93 isof1o ιh|hIsomE,BcardbjbjIsomE,Bcardbjbjιh|hIsomE,Bcardbjbj:cardbj1-1 ontobj
94 92 93 syl AωAFinBOrAaAb:ωontoAciiAjωi=bjιh|hIsomE,Bcardbjbj:cardbj1-1 ontobj
95 f1ocnv ιh|hIsomE,Bcardbjbj:cardbj1-1 ontobjιh|hIsomE,Bcardbjbj-1:bj1-1 ontocardbj
96 f1of ιh|hIsomE,Bcardbjbj-1:bj1-1 ontocardbjιh|hIsomE,Bcardbjbj-1:bjcardbj
97 94 95 96 3syl AωAFinBOrAaAb:ωontoAciiAjωi=bjιh|hIsomE,Bcardbjbj-1:bjcardbj
98 simprll AωAFinBOrAaAb:ωontoAciiAjωi=bjci
99 simprrr AωAFinBOrAaAb:ωontoAciiAjωi=bji=bj
100 98 99 eleqtrd AωAFinBOrAaAb:ωontoAciiAjωi=bjcbj
101 97 100 ffvelcdmd AωAFinBOrAaAb:ωontoAciiAjωi=bjιh|hIsomE,Bcardbjbj-1ccardbj
102 77 101 sseldd AωAFinBOrAaAb:ωontoAciiAjωi=bjιh|hIsomE,Bcardbjbj-1cω
103 2fveq3 f=jcardbf=cardbj
104 103 eleq2d f=jgcardbfgcardbj
105 isoeq4 cardbf=cardbjhIsomE,BcardbfbfhIsomE,Bcardbjbf
106 103 105 syl f=jhIsomE,BcardbfbfhIsomE,Bcardbjbf
107 fveq2 f=jbf=bj
108 isoeq5 bf=bjhIsomE,BcardbjbfhIsomE,Bcardbjbj
109 107 108 syl f=jhIsomE,BcardbjbfhIsomE,Bcardbjbj
110 106 109 bitrd f=jhIsomE,BcardbfbfhIsomE,Bcardbjbj
111 110 iotabidv f=jιh|hIsomE,Bcardbfbf=ιh|hIsomE,Bcardbjbj
112 111 fveq1d f=jιh|hIsomE,Bcardbfbfg=ιh|hIsomE,Bcardbjbjg
113 104 112 ifbieq1d f=jifgcardbfιh|hIsomE,Bcardbfbfga=ifgcardbjιh|hIsomE,Bcardbjbjga
114 eleq1 g=ιh|hIsomE,Bcardbjbj-1cgcardbjιh|hIsomE,Bcardbjbj-1ccardbj
115 fveq2 g=ιh|hIsomE,Bcardbjbj-1cιh|hIsomE,Bcardbjbjg=ιh|hIsomE,Bcardbjbjιh|hIsomE,Bcardbjbj-1c
116 114 115 ifbieq1d g=ιh|hIsomE,Bcardbjbj-1cifgcardbjιh|hIsomE,Bcardbjbjga=ifιh|hIsomE,Bcardbjbj-1ccardbjιh|hIsomE,Bcardbjbjιh|hIsomE,Bcardbjbj-1ca
117 fvex ιh|hIsomE,Bcardbjbjιh|hIsomE,Bcardbjbj-1cV
118 vex aV
119 117 118 ifex ifιh|hIsomE,Bcardbjbj-1ccardbjιh|hIsomE,Bcardbjbjιh|hIsomE,Bcardbjbj-1caV
120 113 116 59 119 ovmpo jωιh|hIsomE,Bcardbjbj-1cωjfω,gωifgcardbfιh|hIsomE,Bcardbfbfgaιh|hIsomE,Bcardbjbj-1c=ifιh|hIsomE,Bcardbjbj-1ccardbjιh|hIsomE,Bcardbjbjιh|hIsomE,Bcardbjbj-1ca
121 67 102 120 syl2anc AωAFinBOrAaAb:ωontoAciiAjωi=bjjfω,gωifgcardbfιh|hIsomE,Bcardbfbfgaιh|hIsomE,Bcardbjbj-1c=ifιh|hIsomE,Bcardbjbj-1ccardbjιh|hIsomE,Bcardbjbjιh|hIsomE,Bcardbjbj-1ca
122 101 iftrued AωAFinBOrAaAb:ωontoAciiAjωi=bjifιh|hIsomE,Bcardbjbj-1ccardbjιh|hIsomE,Bcardbjbjιh|hIsomE,Bcardbjbj-1ca=ιh|hIsomE,Bcardbjbjιh|hIsomE,Bcardbjbj-1c
123 f1ocnvfv2 ιh|hIsomE,Bcardbjbj:cardbj1-1 ontobjcbjιh|hIsomE,Bcardbjbjιh|hIsomE,Bcardbjbj-1c=c
124 94 100 123 syl2anc AωAFinBOrAaAb:ωontoAciiAjωi=bjιh|hIsomE,Bcardbjbjιh|hIsomE,Bcardbjbj-1c=c
125 121 122 124 3eqtrrd AωAFinBOrAaAb:ωontoAciiAjωi=bjc=jfω,gωifgcardbfιh|hIsomE,Bcardbfbfgaιh|hIsomE,Bcardbjbj-1c
126 rspceov jωιh|hIsomE,Bcardbjbj-1cωc=jfω,gωifgcardbfιh|hIsomE,Bcardbfbfgaιh|hIsomE,Bcardbjbj-1cdωeωc=dfω,gωifgcardbfιh|hIsomE,Bcardbfbfgae
127 67 102 125 126 syl3anc AωAFinBOrAaAb:ωontoAciiAjωi=bjdωeωc=dfω,gωifgcardbfιh|hIsomE,Bcardbfbfgae
128 127 expr AωAFinBOrAaAb:ωontoAciiAjωi=bjdωeωc=dfω,gωifgcardbfιh|hIsomE,Bcardbfbfgae
129 128 expd AωAFinBOrAaAb:ωontoAciiAjωi=bjdωeωc=dfω,gωifgcardbfιh|hIsomE,Bcardbfbfgae
130 129 rexlimdv AωAFinBOrAaAb:ωontoAciiAjωi=bjdωeωc=dfω,gωifgcardbfιh|hIsomE,Bcardbfbfgae
131 66 130 mpd AωAFinBOrAaAb:ωontoAciiAdωeωc=dfω,gωifgcardbfιh|hIsomE,Bcardbfbfgae
132 131 ex AωAFinBOrAaAb:ωontoAciiAdωeωc=dfω,gωifgcardbfιh|hIsomE,Bcardbfbfgae
133 132 exlimdv AωAFinBOrAaAb:ωontoAiciiAdωeωc=dfω,gωifgcardbfιh|hIsomE,Bcardbfbfgae
134 62 133 biimtrid AωAFinBOrAaAb:ωontoAcAdωeωc=dfω,gωifgcardbfιh|hIsomE,Bcardbfbfgae
135 134 ralrimiv AωAFinBOrAaAb:ωontoAcAdωeωc=dfω,gωifgcardbfιh|hIsomE,Bcardbfbfgae
136 foov fω,gωifgcardbfιh|hIsomE,Bcardbfbfga:ω×ωontoAfω,gωifgcardbfιh|hIsomE,Bcardbfbfga:ω×ωAcAdωeωc=dfω,gωifgcardbfιh|hIsomE,Bcardbfbfgae
137 61 135 136 sylanbrc AωAFinBOrAaAb:ωontoAfω,gωifgcardbfιh|hIsomE,Bcardbfbfga:ω×ωontoA
138 fodomnum ω×ωdomcardfω,gωifgcardbfιh|hIsomE,Bcardbfbfga:ω×ωontoAAω×ω
139 25 137 138 mpsyl AωAFinBOrAaAb:ωontoAAω×ω
140 xpomen ω×ωω
141 domentr Aω×ωω×ωωAω
142 139 140 141 sylancl AωAFinBOrAaAb:ωontoAAω
143 142 expr AωAFinBOrAaAb:ωontoAAω
144 143 exlimdv AωAFinBOrAaAbb:ωontoAAω
145 20 144 mpd AωAFinBOrAaAAω
146 145 expcom aAAωAFinBOrAAω
147 146 exlimiv aaAAωAFinBOrAAω
148 6 147 sylbi AAωAFinBOrAAω
149 5 148 pm2.61ine AωAFinBOrAAω