Metamath Proof Explorer


Theorem ivthicc

Description: The interval between any two points of a continuous real function is contained in the range of the function. Equivalently, the range of a continuous real function is convex. (Contributed by Mario Carneiro, 12-Aug-2014)

Ref Expression
Hypotheses ivthicc.1 φA
ivthicc.2 φB
ivthicc.3 φMAB
ivthicc.4 φNAB
ivthicc.5 φABD
ivthicc.7 φF:Dcn
ivthicc.8 φxABFx
Assertion ivthicc φFMFNranF

Proof

Step Hyp Ref Expression
1 ivthicc.1 φA
2 ivthicc.2 φB
3 ivthicc.3 φMAB
4 ivthicc.4 φNAB
5 ivthicc.5 φABD
6 ivthicc.7 φF:Dcn
7 ivthicc.8 φxABFx
8 simpll φyFMFNM<Nφ
9 elicc2 ABMABMAMMB
10 1 2 9 syl2anc φMABMAMMB
11 3 10 mpbid φMAMMB
12 11 simp1d φM
13 12 ad2antrr φyFMFNM<NM
14 elicc2 ABNABNANNB
15 1 2 14 syl2anc φNABNANNB
16 4 15 mpbid φNANNB
17 16 simp1d φN
18 17 ad2antrr φyFMFNM<NN
19 fveq2 x=MFx=FM
20 19 eleq1d x=MFxFM
21 7 ralrimiva φxABFx
22 20 21 3 rspcdva φFM
23 fveq2 x=NFx=FN
24 23 eleq1d x=NFxFN
25 24 21 4 rspcdva φFN
26 iccssre FMFNFMFN
27 22 25 26 syl2anc φFMFN
28 27 sselda φyFMFNy
29 28 adantr φyFMFNM<Ny
30 simpr φyFMFNM<NM<N
31 11 simp2d φAM
32 16 simp3d φNB
33 iccss ABAMNBMNAB
34 1 2 31 32 33 syl22anc φMNAB
35 34 5 sstrd φMND
36 35 ad2antrr φyFMFNM<NMND
37 6 ad2antrr φyFMFNM<NF:Dcn
38 34 sselda φxMNxAB
39 38 7 syldan φxMNFx
40 8 39 sylan φyFMFNM<NxMNFx
41 elicc2 FMFNyFMFNyFMyyFN
42 22 25 41 syl2anc φyFMFNyFMyyFN
43 42 biimpa φyFMFNyFMyyFN
44 3simpc yFMyyFNFMyyFN
45 43 44 syl φyFMFNFMyyFN
46 45 adantr φyFMFNM<NFMyyFN
47 13 18 29 30 36 37 40 46 ivthle φyFMFNM<NzMNFz=y
48 35 sselda φzMNzD
49 cncff F:DcnF:D
50 ffn F:DFFnD
51 6 49 50 3syl φFFnD
52 fnfvelrn FFnDzDFzranF
53 51 52 sylan φzDFzranF
54 eleq1 Fz=yFzranFyranF
55 53 54 syl5ibcom φzDFz=yyranF
56 48 55 syldan φzMNFz=yyranF
57 56 rexlimdva φzMNFz=yyranF
58 8 47 57 sylc φyFMFNM<NyranF
59 simplr φyFMFNM=NyFMFN
60 simpr φyFMFNM=NM=N
61 60 fveq2d φyFMFNM=NFM=FN
62 61 oveq2d φyFMFNM=NFMFM=FMFN
63 22 rexrd φFM*
64 63 ad2antrr φyFMFNM=NFM*
65 iccid FM*FMFM=FM
66 64 65 syl φyFMFNM=NFMFM=FM
67 62 66 eqtr3d φyFMFNM=NFMFN=FM
68 59 67 eleqtrd φyFMFNM=NyFM
69 elsni yFMy=FM
70 68 69 syl φyFMFNM=Ny=FM
71 5 3 sseldd φMD
72 fnfvelrn FFnDMDFMranF
73 51 71 72 syl2anc φFMranF
74 73 ad2antrr φyFMFNM=NFMranF
75 70 74 eqeltrd φyFMFNM=NyranF
76 simpll φyFMFNN<Mφ
77 17 ad2antrr φyFMFNN<MN
78 12 ad2antrr φyFMFNN<MM
79 28 adantr φyFMFNN<My
80 simpr φyFMFNN<MN<M
81 16 simp2d φAN
82 11 simp3d φMB
83 iccss ABANMBNMAB
84 1 2 81 82 83 syl22anc φNMAB
85 84 5 sstrd φNMD
86 85 ad2antrr φyFMFNN<MNMD
87 6 ad2antrr φyFMFNN<MF:Dcn
88 84 sselda φxNMxAB
89 88 7 syldan φxNMFx
90 76 89 sylan φyFMFNN<MxNMFx
91 45 adantr φyFMFNN<MFMyyFN
92 77 78 79 80 86 87 90 91 ivthle2 φyFMFNN<MzNMFz=y
93 85 sselda φzNMzD
94 93 55 syldan φzNMFz=yyranF
95 94 rexlimdva φzNMFz=yyranF
96 76 92 95 sylc φyFMFNN<MyranF
97 12 17 lttri4d φM<NM=NN<M
98 97 adantr φyFMFNM<NM=NN<M
99 58 75 96 98 mpjao3dan φyFMFNyranF
100 99 ex φyFMFNyranF
101 100 ssrdv φFMFNranF