Metamath Proof Explorer


Theorem jm2.18

Description: Theorem 2.18 of JonesMatijasevic p. 696. Direct relationship of the exponential function to X and Y sequences. (Contributed by Stefan O'Rear, 14-Oct-2014)

Ref Expression
Assertion jm2.18 A2K0N02AK-K2-1AXrmN-AKAYrmN-KN

Proof

Step Hyp Ref Expression
1 2z 2
2 eluzelz A2A
3 2 adantr A2K0A
4 zmulcl 2A2A
5 1 3 4 sylancr A2K02A
6 nn0z K0K
7 6 adantl A2K0K
8 5 7 zmulcld A2K02AK
9 zsqcl KK2
10 7 9 syl A2K0K2
11 8 10 zsubcld A2K02AKK2
12 peano2zm 2AKK22AK-K2-1
13 11 12 syl A2K02AK-K2-1
14 dvds0 2AK-K2-12AK-K2-10
15 13 14 syl A2K02AK-K2-10
16 rmx0 A2AXrm0=1
17 16 adantr A2K0AXrm0=1
18 rmy0 A2AYrm0=0
19 18 adantr A2K0AYrm0=0
20 19 oveq2d A2K0AKAYrm0=AK0
21 3 7 zsubcld A2K0AK
22 21 zcnd A2K0AK
23 22 mul01d A2K0AK0=0
24 20 23 eqtrd A2K0AKAYrm0=0
25 17 24 oveq12d A2K0AXrm0AKAYrm0=10
26 1m0e1 10=1
27 25 26 eqtrdi A2K0AXrm0AKAYrm0=1
28 nn0cn K0K
29 28 adantl A2K0K
30 29 exp0d A2K0K0=1
31 27 30 oveq12d A2K0AXrm0-AKAYrm0-K0=11
32 1m1e0 11=0
33 31 32 eqtrdi A2K0AXrm0-AKAYrm0-K0=0
34 15 33 breqtrrd A2K02AK-K2-1AXrm0-AKAYrm0-K0
35 rmx1 A2AXrm1=A
36 35 adantr A2K0AXrm1=A
37 rmy1 A2AYrm1=1
38 37 adantr A2K0AYrm1=1
39 38 oveq2d A2K0AKAYrm1=AK1
40 22 mulridd A2K0AK1=AK
41 39 40 eqtrd A2K0AKAYrm1=AK
42 36 41 oveq12d A2K0AXrm1AKAYrm1=AAK
43 3 zcnd A2K0A
44 43 29 nncand A2K0AAK=K
45 42 44 eqtrd A2K0AXrm1AKAYrm1=K
46 29 exp1d A2K0K1=K
47 45 46 oveq12d A2K0AXrm1-AKAYrm1-K1=KK
48 29 subidd A2K0KK=0
49 47 48 eqtrd A2K0AXrm1-AKAYrm1-K1=0
50 15 49 breqtrrd A2K02AK-K2-1AXrm1-AKAYrm1-K1
51 pm3.43 A2K02AK-K2-1AXrmb1-AKAYrmb1-Kb1A2K02AK-K2-1AXrmb-AKAYrmb-KbA2K02AK-K2-1AXrmb1-AKAYrmb1-Kb12AK-K2-1AXrmb-AKAYrmb-Kb
52 13 adantr A2K0b2AK-K2-1
53 5 adantr A2K0b2A
54 simpll A2K0bA2
55 nnz bb
56 55 adantl A2K0bb
57 frmx Xrm:2×0
58 57 fovcl A2bAXrmb0
59 54 56 58 syl2anc A2K0bAXrmb0
60 59 nn0zd A2K0bAXrmb
61 21 adantr A2K0bAK
62 frmy Yrm:2×
63 62 fovcl A2bAYrmb
64 54 56 63 syl2anc A2K0bAYrmb
65 61 64 zmulcld A2K0bAKAYrmb
66 60 65 zsubcld A2K0bAXrmbAKAYrmb
67 53 66 zmulcld A2K0b2AAXrmbAKAYrmb
68 peano2zm bb1
69 56 68 syl A2K0bb1
70 57 fovcl A2b1AXrmb10
71 54 69 70 syl2anc A2K0bAXrmb10
72 71 nn0zd A2K0bAXrmb1
73 62 fovcl A2b1AYrmb1
74 54 69 73 syl2anc A2K0bAYrmb1
75 61 74 zmulcld A2K0bAKAYrmb1
76 72 75 zsubcld A2K0bAXrmb1AKAYrmb1
77 67 76 zsubcld A2K0b2AAXrmbAKAYrmbAXrmb1AKAYrmb1
78 52 77 jca A2K0b2AK-K2-12AAXrmbAKAYrmbAXrmb1AKAYrmb1
79 78 adantr A2K0b2AK-K2-1AXrmb1-AKAYrmb1-Kb12AK-K2-1AXrmb-AKAYrmb-Kb2AK-K2-12AAXrmbAKAYrmbAXrmb1AKAYrmb1
80 7 adantr A2K0bK
81 nnnn0 bb0
82 81 adantl A2K0bb0
83 zexpcl Kb0Kb
84 80 82 83 syl2anc A2K0bKb
85 53 84 zmulcld A2K0b2AKb
86 nnm1nn0 bb10
87 86 adantl A2K0bb10
88 zexpcl Kb10Kb1
89 80 87 88 syl2anc A2K0bKb1
90 85 89 zsubcld A2K0b2AKbKb1
91 0z 0
92 zaddcl 0K20+K2
93 91 10 92 sylancr A2K00+K2
94 93 adantr A2K0b0+K2
95 89 94 zmulcld A2K0bKb10+K2
96 90 95 jca A2K0b2AKbKb1Kb10+K2
97 96 adantr A2K0b2AK-K2-1AXrmb1-AKAYrmb1-Kb12AK-K2-1AXrmb-AKAYrmb-Kb2AKbKb1Kb10+K2
98 52 67 85 3jca A2K0b2AK-K2-12AAXrmbAKAYrmb2AKb
99 98 adantr A2K0b2AK-K2-1AXrmb1-AKAYrmb1-Kb12AK-K2-1AXrmb-AKAYrmb-Kb2AK-K2-12AAXrmbAKAYrmb2AKb
100 76 89 jca A2K0bAXrmb1AKAYrmb1Kb1
101 100 adantr A2K0b2AK-K2-1AXrmb1-AKAYrmb1-Kb12AK-K2-1AXrmb-AKAYrmb-KbAXrmb1AKAYrmb1Kb1
102 13 5 5 3jca A2K02AK-K2-12A2A
103 102 ad2antrr A2K0b2AK-K2-1AXrmb-AKAYrmb-Kb2AK-K2-12A2A
104 66 84 jca A2K0bAXrmbAKAYrmbKb
105 104 adantr A2K0b2AK-K2-1AXrmb-AKAYrmb-KbAXrmbAKAYrmbKb
106 congid 2AK-K2-12A2AK-K2-12A2A
107 13 5 106 syl2anc A2K02AK-K2-12A2A
108 107 ad2antrr A2K0b2AK-K2-1AXrmb-AKAYrmb-Kb2AK-K2-12A2A
109 simpr A2K0b2AK-K2-1AXrmb-AKAYrmb-Kb2AK-K2-1AXrmb-AKAYrmb-Kb
110 congmul 2AK-K2-12A2AAXrmbAKAYrmbKb2AK-K2-12A2A2AK-K2-1AXrmb-AKAYrmb-Kb2AK-K2-12AAXrmbAKAYrmb2AKb
111 103 105 108 109 110 syl112anc A2K0b2AK-K2-1AXrmb-AKAYrmb-Kb2AK-K2-12AAXrmbAKAYrmb2AKb
112 111 adantrl A2K0b2AK-K2-1AXrmb1-AKAYrmb1-Kb12AK-K2-1AXrmb-AKAYrmb-Kb2AK-K2-12AAXrmbAKAYrmb2AKb
113 simprl A2K0b2AK-K2-1AXrmb1-AKAYrmb1-Kb12AK-K2-1AXrmb-AKAYrmb-Kb2AK-K2-1AXrmb1-AKAYrmb1-Kb1
114 congsub 2AK-K2-12AAXrmbAKAYrmb2AKbAXrmb1AKAYrmb1Kb12AK-K2-12AAXrmbAKAYrmb2AKb2AK-K2-1AXrmb1-AKAYrmb1-Kb12AK-K2-12AAXrmbAKAYrmb-AXrmb1AKAYrmb1-2AKbKb1
115 99 101 112 113 114 syl112anc A2K0b2AK-K2-1AXrmb1-AKAYrmb1-Kb12AK-K2-1AXrmb-AKAYrmb-Kb2AK-K2-12AAXrmbAKAYrmb-AXrmb1AKAYrmb1-2AKbKb1
116 13 10 zaddcld A2K02AKK2-1+K2
117 116 adantr A2K0b2AKK2-1+K2
118 congid 2AK-K2-1Kb12AK-K2-1Kb1Kb1
119 52 89 118 syl2anc A2K0b2AK-K2-1Kb1Kb1
120 0zd A2K00
121 iddvds 2AK-K2-12AK-K2-12AK-K2-1
122 13 121 syl A2K02AK-K2-12AK-K2-1
123 13 zcnd A2K02AK-K2-1
124 123 subid1d A2K02AKK2-1-0=2AK-K2-1
125 122 124 breqtrrd A2K02AK-K2-12AKK2-1-0
126 congid 2AK-K2-1K22AK-K2-1K2K2
127 13 10 126 syl2anc A2K02AK-K2-1K2K2
128 congadd 2AK-K2-12AK-K2-10K2K22AK-K2-12AKK2-1-02AK-K2-1K2K22AK-K2-12AK-K2-1+K2-0+K2
129 13 13 120 10 10 125 127 128 syl322anc A2K02AK-K2-12AK-K2-1+K2-0+K2
130 129 adantr A2K0b2AK-K2-12AK-K2-1+K2-0+K2
131 congmul 2AK-K2-1Kb1Kb12AKK2-1+K20+K22AK-K2-1Kb1Kb12AK-K2-12AK-K2-1+K2-0+K22AK-K2-1Kb12AKK2-1+K2Kb10+K2
132 52 89 89 117 94 119 130 131 syl322anc A2K0b2AK-K2-1Kb12AKK2-1+K2Kb10+K2
133 11 zcnd A2K02AKK2
134 29 sqcld A2K0K2
135 1cnd A2K01
136 133 134 135 addsubd A2K02AKK2+K2-1=2AKK2-1+K2
137 8 zcnd A2K02AK
138 137 134 npcand A2K02AK-K2+K2=2AK
139 138 oveq1d A2K02AKK2+K2-1=2AK1
140 136 139 eqtr3d A2K02AKK2-1+K2=2AK1
141 140 adantr A2K0b2AKK2-1+K2=2AK1
142 141 oveq2d A2K0bKb12AKK2-1+K2=Kb12AK1
143 28 ad2antlr A2K0bK
144 143 87 expcld A2K0bKb1
145 137 adantr A2K0b2AK
146 1cnd A2K0b1
147 144 145 146 subdid A2K0bKb12AK1=Kb12AKKb11
148 5 zcnd A2K02A
149 148 adantr A2K0b2A
150 144 149 143 mul12d A2K0bKb12AK=2AKb1K
151 simpr A2K0bb
152 expm1t KbKb=Kb1K
153 143 151 152 syl2anc A2K0bKb=Kb1K
154 153 oveq2d A2K0b2AKb=2AKb1K
155 150 154 eqtr4d A2K0bKb12AK=2AKb
156 144 mulridd A2K0bKb11=Kb1
157 155 156 oveq12d A2K0bKb12AKKb11=2AKbKb1
158 142 147 157 3eqtrrd A2K0b2AKbKb1=Kb12AKK2-1+K2
159 158 oveq1d A2K0b2AKb-Kb1-Kb10+K2=Kb12AKK2-1+K2Kb10+K2
160 132 159 breqtrrd A2K0b2AK-K2-12AKb-Kb1-Kb10+K2
161 160 adantr A2K0b2AK-K2-1AXrmb1-AKAYrmb1-Kb12AK-K2-1AXrmb-AKAYrmb-Kb2AK-K2-12AKb-Kb1-Kb10+K2
162 congtr 2AK-K2-12AAXrmbAKAYrmbAXrmb1AKAYrmb12AKbKb1Kb10+K22AK-K2-12AAXrmbAKAYrmb-AXrmb1AKAYrmb1-2AKbKb12AK-K2-12AKb-Kb1-Kb10+K22AK-K2-12AAXrmbAKAYrmb-AXrmb1AKAYrmb1-Kb10+K2
163 79 97 115 161 162 syl112anc A2K0b2AK-K2-1AXrmb1-AKAYrmb1-Kb12AK-K2-1AXrmb-AKAYrmb-Kb2AK-K2-12AAXrmbAKAYrmb-AXrmb1AKAYrmb1-Kb10+K2
164 rmxluc A2bAXrmb+1=2AAXrmbAXrmb1
165 54 56 164 syl2anc A2K0bAXrmb+1=2AAXrmbAXrmb1
166 rmyluc A2bAYrmb+1=2AYrmbAAYrmb1
167 54 56 166 syl2anc A2K0bAYrmb+1=2AYrmbAAYrmb1
168 167 oveq2d A2K0bAKAYrmb+1=AK2AYrmbAAYrmb1
169 2 zcnd A2A
170 169 ad2antrr A2K0bA
171 170 143 subcld A2K0bAK
172 2cn 2
173 63 zcnd A2bAYrmb
174 54 56 173 syl2anc A2K0bAYrmb
175 174 170 mulcld A2K0bAYrmbA
176 mulcl 2AYrmbA2AYrmbA
177 172 175 176 sylancr A2K0b2AYrmbA
178 73 zcnd A2b1AYrmb1
179 54 69 178 syl2anc A2K0bAYrmb1
180 171 177 179 subdid A2K0bAK2AYrmbAAYrmb1=AK2AYrmbAAKAYrmb1
181 2cnd A2K0b2
182 181 174 170 mul12d A2K0b2AYrmbA=AYrmb2A
183 174 149 mulcomd A2K0bAYrmb2A=2AAYrmb
184 182 183 eqtrd A2K0b2AYrmbA=2AAYrmb
185 184 oveq2d A2K0bAK2AYrmbA=AK2AAYrmb
186 171 149 174 mul12d A2K0bAK2AAYrmb=2AAKAYrmb
187 185 186 eqtrd A2K0bAK2AYrmbA=2AAKAYrmb
188 187 oveq1d A2K0bAK2AYrmbAAKAYrmb1=2AAKAYrmbAKAYrmb1
189 168 180 188 3eqtrd A2K0bAKAYrmb+1=2AAKAYrmbAKAYrmb1
190 165 189 oveq12d A2K0bAXrmb+1AKAYrmb+1=2AAXrmb-AXrmb1-2AAKAYrmbAKAYrmb1
191 58 nn0cnd A2bAXrmb
192 54 56 191 syl2anc A2K0bAXrmb
193 149 192 mulcld A2K0b2AAXrmb
194 70 nn0cnd A2b1AXrmb1
195 54 69 194 syl2anc A2K0bAXrmb1
196 171 174 mulcld A2K0bAKAYrmb
197 149 196 mulcld A2K0b2AAKAYrmb
198 171 179 mulcld A2K0bAKAYrmb1
199 193 195 197 198 sub4d A2K0b2AAXrmb-AXrmb1-2AAKAYrmbAKAYrmb1=2AAXrmb-2AAKAYrmb-AXrmb1AKAYrmb1
200 149 192 196 subdid A2K0b2AAXrmbAKAYrmb=2AAXrmb2AAKAYrmb
201 200 eqcomd A2K0b2AAXrmb2AAKAYrmb=2AAXrmbAKAYrmb
202 201 oveq1d A2K0b2AAXrmb-2AAKAYrmb-AXrmb1AKAYrmb1=2AAXrmbAKAYrmbAXrmb1AKAYrmb1
203 190 199 202 3eqtrd A2K0bAXrmb+1AKAYrmb+1=2AAXrmbAKAYrmbAXrmb1AKAYrmb1
204 143 82 expp1d A2K0bKb+1=KbK
205 nncn bb
206 205 adantl A2K0bb
207 ax-1cn 1
208 npcan b1b-1+1=b
209 206 207 208 sylancl A2K0bb-1+1=b
210 209 oveq2d A2K0bKb-1+1=Kb
211 143 87 expp1d A2K0bKb-1+1=Kb1K
212 210 211 eqtr3d A2K0bKb=Kb1K
213 212 oveq1d A2K0bKbK=Kb1KK
214 144 143 143 mulassd A2K0bKb1KK=Kb1KK
215 134 addlidd A2K00+K2=K2
216 29 sqvald A2K0K2=KK
217 215 216 eqtr2d A2K0KK=0+K2
218 217 adantr A2K0bKK=0+K2
219 218 oveq2d A2K0bKb1KK=Kb10+K2
220 214 219 eqtrd A2K0bKb1KK=Kb10+K2
221 204 213 220 3eqtrd A2K0bKb+1=Kb10+K2
222 203 221 oveq12d A2K0bAXrmb+1-AKAYrmb+1-Kb+1=2AAXrmbAKAYrmb-AXrmb1AKAYrmb1-Kb10+K2
223 222 adantr A2K0b2AK-K2-1AXrmb1-AKAYrmb1-Kb12AK-K2-1AXrmb-AKAYrmb-KbAXrmb+1-AKAYrmb+1-Kb+1=2AAXrmbAKAYrmb-AXrmb1AKAYrmb1-Kb10+K2
224 163 223 breqtrrd A2K0b2AK-K2-1AXrmb1-AKAYrmb1-Kb12AK-K2-1AXrmb-AKAYrmb-Kb2AK-K2-1AXrmb+1-AKAYrmb+1-Kb+1
225 224 ex A2K0b2AK-K2-1AXrmb1-AKAYrmb1-Kb12AK-K2-1AXrmb-AKAYrmb-Kb2AK-K2-1AXrmb+1-AKAYrmb+1-Kb+1
226 225 expcom bA2K02AK-K2-1AXrmb1-AKAYrmb1-Kb12AK-K2-1AXrmb-AKAYrmb-Kb2AK-K2-1AXrmb+1-AKAYrmb+1-Kb+1
227 226 a2d bA2K02AK-K2-1AXrmb1-AKAYrmb1-Kb12AK-K2-1AXrmb-AKAYrmb-KbA2K02AK-K2-1AXrmb+1-AKAYrmb+1-Kb+1
228 51 227 syl5 bA2K02AK-K2-1AXrmb1-AKAYrmb1-Kb1A2K02AK-K2-1AXrmb-AKAYrmb-KbA2K02AK-K2-1AXrmb+1-AKAYrmb+1-Kb+1
229 oveq2 a=0AXrma=AXrm0
230 oveq2 a=0AYrma=AYrm0
231 230 oveq2d a=0AKAYrma=AKAYrm0
232 229 231 oveq12d a=0AXrmaAKAYrma=AXrm0AKAYrm0
233 oveq2 a=0Ka=K0
234 232 233 oveq12d a=0AXrma-AKAYrma-Ka=AXrm0-AKAYrm0-K0
235 234 breq2d a=02AK-K2-1AXrma-AKAYrma-Ka2AK-K2-1AXrm0-AKAYrm0-K0
236 235 imbi2d a=0A2K02AK-K2-1AXrma-AKAYrma-KaA2K02AK-K2-1AXrm0-AKAYrm0-K0
237 oveq2 a=1AXrma=AXrm1
238 oveq2 a=1AYrma=AYrm1
239 238 oveq2d a=1AKAYrma=AKAYrm1
240 237 239 oveq12d a=1AXrmaAKAYrma=AXrm1AKAYrm1
241 oveq2 a=1Ka=K1
242 240 241 oveq12d a=1AXrma-AKAYrma-Ka=AXrm1-AKAYrm1-K1
243 242 breq2d a=12AK-K2-1AXrma-AKAYrma-Ka2AK-K2-1AXrm1-AKAYrm1-K1
244 243 imbi2d a=1A2K02AK-K2-1AXrma-AKAYrma-KaA2K02AK-K2-1AXrm1-AKAYrm1-K1
245 oveq2 a=b1AXrma=AXrmb1
246 oveq2 a=b1AYrma=AYrmb1
247 246 oveq2d a=b1AKAYrma=AKAYrmb1
248 245 247 oveq12d a=b1AXrmaAKAYrma=AXrmb1AKAYrmb1
249 oveq2 a=b1Ka=Kb1
250 248 249 oveq12d a=b1AXrma-AKAYrma-Ka=AXrmb1-AKAYrmb1-Kb1
251 250 breq2d a=b12AK-K2-1AXrma-AKAYrma-Ka2AK-K2-1AXrmb1-AKAYrmb1-Kb1
252 251 imbi2d a=b1A2K02AK-K2-1AXrma-AKAYrma-KaA2K02AK-K2-1AXrmb1-AKAYrmb1-Kb1
253 oveq2 a=bAXrma=AXrmb
254 oveq2 a=bAYrma=AYrmb
255 254 oveq2d a=bAKAYrma=AKAYrmb
256 253 255 oveq12d a=bAXrmaAKAYrma=AXrmbAKAYrmb
257 oveq2 a=bKa=Kb
258 256 257 oveq12d a=bAXrma-AKAYrma-Ka=AXrmb-AKAYrmb-Kb
259 258 breq2d a=b2AK-K2-1AXrma-AKAYrma-Ka2AK-K2-1AXrmb-AKAYrmb-Kb
260 259 imbi2d a=bA2K02AK-K2-1AXrma-AKAYrma-KaA2K02AK-K2-1AXrmb-AKAYrmb-Kb
261 oveq2 a=b+1AXrma=AXrmb+1
262 oveq2 a=b+1AYrma=AYrmb+1
263 262 oveq2d a=b+1AKAYrma=AKAYrmb+1
264 261 263 oveq12d a=b+1AXrmaAKAYrma=AXrmb+1AKAYrmb+1
265 oveq2 a=b+1Ka=Kb+1
266 264 265 oveq12d a=b+1AXrma-AKAYrma-Ka=AXrmb+1-AKAYrmb+1-Kb+1
267 266 breq2d a=b+12AK-K2-1AXrma-AKAYrma-Ka2AK-K2-1AXrmb+1-AKAYrmb+1-Kb+1
268 267 imbi2d a=b+1A2K02AK-K2-1AXrma-AKAYrma-KaA2K02AK-K2-1AXrmb+1-AKAYrmb+1-Kb+1
269 oveq2 a=NAXrma=AXrmN
270 oveq2 a=NAYrma=AYrmN
271 270 oveq2d a=NAKAYrma=AKAYrmN
272 269 271 oveq12d a=NAXrmaAKAYrma=AXrmNAKAYrmN
273 oveq2 a=NKa=KN
274 272 273 oveq12d a=NAXrma-AKAYrma-Ka=AXrmN-AKAYrmN-KN
275 274 breq2d a=N2AK-K2-1AXrma-AKAYrma-Ka2AK-K2-1AXrmN-AKAYrmN-KN
276 275 imbi2d a=NA2K02AK-K2-1AXrma-AKAYrma-KaA2K02AK-K2-1AXrmN-AKAYrmN-KN
277 34 50 228 236 244 252 260 268 276 2nn0ind N0A2K02AK-K2-1AXrmN-AKAYrmN-KN
278 277 impcom A2K0N02AK-K2-1AXrmN-AKAYrmN-KN
279 278 3impa A2K0N02AK-K2-1AXrmN-AKAYrmN-KN