| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lbsext.v |  | 
						
							| 2 |  | lbsext.j |  | 
						
							| 3 |  | lbsext.n |  | 
						
							| 4 |  | lbsext.w |  | 
						
							| 5 |  | lbsext.c |  | 
						
							| 6 |  | lbsext.x |  | 
						
							| 7 |  | lbsext.s |  | 
						
							| 8 |  | lbsext.p |  | 
						
							| 9 |  | lbsext.a |  | 
						
							| 10 |  | lbsext.z |  | 
						
							| 11 |  | lbsext.r |  | 
						
							| 12 |  | lbsext.t |  | 
						
							| 13 |  | eqidd |  | 
						
							| 14 |  | eqidd |  | 
						
							| 15 | 1 | a1i |  | 
						
							| 16 |  | eqidd |  | 
						
							| 17 |  | eqidd |  | 
						
							| 18 | 8 | a1i |  | 
						
							| 19 |  | lveclmod |  | 
						
							| 20 | 4 19 | syl |  | 
						
							| 21 | 7 | ssrab3 |  | 
						
							| 22 | 9 21 | sstrdi |  | 
						
							| 23 | 22 | sselda |  | 
						
							| 24 | 23 | elpwid |  | 
						
							| 25 | 24 | ssdifssd |  | 
						
							| 26 | 1 3 | lspssv |  | 
						
							| 27 | 20 25 26 | syl2an2r |  | 
						
							| 28 | 27 | ralrimiva |  | 
						
							| 29 |  | iunss |  | 
						
							| 30 | 28 29 | sylibr |  | 
						
							| 31 | 12 30 | eqsstrid |  | 
						
							| 32 | 12 | a1i |  | 
						
							| 33 | 1 8 3 | lspcl |  | 
						
							| 34 | 20 25 33 | syl2an2r |  | 
						
							| 35 | 8 | lssn0 |  | 
						
							| 36 | 34 35 | syl |  | 
						
							| 37 | 36 | ralrimiva |  | 
						
							| 38 |  | r19.2z |  | 
						
							| 39 | 10 37 38 | syl2anc |  | 
						
							| 40 |  | iunn0 |  | 
						
							| 41 | 39 40 | sylib |  | 
						
							| 42 | 32 41 | eqnetrd |  | 
						
							| 43 | 12 | eleq2i |  | 
						
							| 44 |  | eliun |  | 
						
							| 45 |  | difeq1 |  | 
						
							| 46 | 45 | fveq2d |  | 
						
							| 47 | 46 | eleq2d |  | 
						
							| 48 | 47 | cbvrexvw |  | 
						
							| 49 | 43 44 48 | 3bitri |  | 
						
							| 50 | 12 | eleq2i |  | 
						
							| 51 |  | eliun |  | 
						
							| 52 |  | difeq1 |  | 
						
							| 53 | 52 | fveq2d |  | 
						
							| 54 | 53 | eleq2d |  | 
						
							| 55 | 54 | cbvrexvw |  | 
						
							| 56 | 50 51 55 | 3bitri |  | 
						
							| 57 | 49 56 | anbi12i |  | 
						
							| 58 |  | reeanv |  | 
						
							| 59 | 57 58 | bitr4i |  | 
						
							| 60 |  | simp1l |  | 
						
							| 61 | 60 11 | syl |  | 
						
							| 62 |  | simp2 |  | 
						
							| 63 |  | sorpssun |  | 
						
							| 64 | 61 62 63 | syl2anc |  | 
						
							| 65 | 60 20 | syl |  | 
						
							| 66 |  | elssuni |  | 
						
							| 67 | 64 66 | syl |  | 
						
							| 68 |  | sspwuni |  | 
						
							| 69 | 22 68 | sylib |  | 
						
							| 70 | 60 69 | syl |  | 
						
							| 71 | 67 70 | sstrd |  | 
						
							| 72 | 71 | ssdifssd |  | 
						
							| 73 | 1 8 3 | lspcl |  | 
						
							| 74 | 65 72 73 | syl2anc |  | 
						
							| 75 |  | simp1r |  | 
						
							| 76 |  | ssun1 |  | 
						
							| 77 |  | ssdif |  | 
						
							| 78 | 76 77 | mp1i |  | 
						
							| 79 | 1 3 | lspss |  | 
						
							| 80 | 65 72 78 79 | syl3anc |  | 
						
							| 81 |  | simp3l |  | 
						
							| 82 | 80 81 | sseldd |  | 
						
							| 83 |  | ssun2 |  | 
						
							| 84 |  | ssdif |  | 
						
							| 85 | 83 84 | mp1i |  | 
						
							| 86 | 1 3 | lspss |  | 
						
							| 87 | 65 72 85 86 | syl3anc |  | 
						
							| 88 |  | simp3r |  | 
						
							| 89 | 87 88 | sseldd |  | 
						
							| 90 |  | eqid |  | 
						
							| 91 |  | eqid |  | 
						
							| 92 |  | eqid |  | 
						
							| 93 |  | eqid |  | 
						
							| 94 | 90 91 92 93 8 | lsscl |  | 
						
							| 95 | 74 75 82 89 94 | syl13anc |  | 
						
							| 96 |  | difeq1 |  | 
						
							| 97 | 96 | fveq2d |  | 
						
							| 98 | 97 | eliuni |  | 
						
							| 99 | 64 95 98 | syl2anc |  | 
						
							| 100 | 99 12 | eleqtrrdi |  | 
						
							| 101 | 100 | 3expia |  | 
						
							| 102 | 101 | rexlimdvva |  | 
						
							| 103 | 59 102 | biimtrid |  | 
						
							| 104 | 103 | exp4b |  | 
						
							| 105 | 104 | 3imp2 |  | 
						
							| 106 | 13 14 15 16 17 18 31 42 105 | islssd |  | 
						
							| 107 |  | eldifi |  | 
						
							| 108 | 107 | adantl |  | 
						
							| 109 |  | eldifn |  | 
						
							| 110 | 109 | ad2antlr |  | 
						
							| 111 |  | eldif |  | 
						
							| 112 | 1 3 | lspssid |  | 
						
							| 113 | 20 25 112 | syl2an2r |  | 
						
							| 114 | 113 | adantlr |  | 
						
							| 115 | 114 | sseld |  | 
						
							| 116 | 111 115 | biimtrrid |  | 
						
							| 117 | 110 116 | mpan2d |  | 
						
							| 118 | 117 | reximdva |  | 
						
							| 119 |  | eluni2 |  | 
						
							| 120 |  | eliun |  | 
						
							| 121 | 118 119 120 | 3imtr4g |  | 
						
							| 122 | 108 121 | mpd |  | 
						
							| 123 | 122 | ex |  | 
						
							| 124 | 123 | ssrdv |  | 
						
							| 125 | 124 12 | sseqtrrdi |  | 
						
							| 126 | 106 125 | jca |  |