Metamath Proof Explorer


Theorem lcfrlem33

Description: Lemma for lcfr . (Contributed by NM, 10-Mar-2015)

Ref Expression
Hypotheses lcfrlem17.h H = LHyp K
lcfrlem17.o ˙ = ocH K W
lcfrlem17.u U = DVecH K W
lcfrlem17.v V = Base U
lcfrlem17.p + ˙ = + U
lcfrlem17.z 0 ˙ = 0 U
lcfrlem17.n N = LSpan U
lcfrlem17.a A = LSAtoms U
lcfrlem17.k φ K HL W H
lcfrlem17.x φ X V 0 ˙
lcfrlem17.y φ Y V 0 ˙
lcfrlem17.ne φ N X N Y
lcfrlem22.b B = N X Y ˙ X + ˙ Y
lcfrlem24.t · ˙ = U
lcfrlem24.s S = Scalar U
lcfrlem24.q Q = 0 S
lcfrlem24.r R = Base S
lcfrlem24.j J = x V 0 ˙ v V ι k R | w ˙ x v = w + ˙ k · ˙ x
lcfrlem24.ib φ I B
lcfrlem24.l L = LKer U
lcfrlem25.d D = LDual U
lcfrlem28.jn φ J Y I Q
lcfrlem29.i F = inv r S
lcfrlem30.m - ˙ = - D
lcfrlem30.c C = J X - ˙ F J Y I S J X I D J Y
lcfrlem33.xi φ J X I = Q
Assertion lcfrlem33 φ C 0 D

Proof

Step Hyp Ref Expression
1 lcfrlem17.h H = LHyp K
2 lcfrlem17.o ˙ = ocH K W
3 lcfrlem17.u U = DVecH K W
4 lcfrlem17.v V = Base U
5 lcfrlem17.p + ˙ = + U
6 lcfrlem17.z 0 ˙ = 0 U
7 lcfrlem17.n N = LSpan U
8 lcfrlem17.a A = LSAtoms U
9 lcfrlem17.k φ K HL W H
10 lcfrlem17.x φ X V 0 ˙
11 lcfrlem17.y φ Y V 0 ˙
12 lcfrlem17.ne φ N X N Y
13 lcfrlem22.b B = N X Y ˙ X + ˙ Y
14 lcfrlem24.t · ˙ = U
15 lcfrlem24.s S = Scalar U
16 lcfrlem24.q Q = 0 S
17 lcfrlem24.r R = Base S
18 lcfrlem24.j J = x V 0 ˙ v V ι k R | w ˙ x v = w + ˙ k · ˙ x
19 lcfrlem24.ib φ I B
20 lcfrlem24.l L = LKer U
21 lcfrlem25.d D = LDual U
22 lcfrlem28.jn φ J Y I Q
23 lcfrlem29.i F = inv r S
24 lcfrlem30.m - ˙ = - D
25 lcfrlem30.c C = J X - ˙ F J Y I S J X I D J Y
26 lcfrlem33.xi φ J X I = Q
27 26 oveq2d φ F J Y I S J X I = F J Y I S Q
28 1 3 9 dvhlmod φ U LMod
29 15 lmodring U LMod S Ring
30 28 29 syl φ S Ring
31 1 3 9 dvhlvec φ U LVec
32 15 lvecdrng U LVec S DivRing
33 31 32 syl φ S DivRing
34 eqid LFnl U = LFnl U
35 eqid 0 D = 0 D
36 eqid f LFnl U | ˙ ˙ L f = L f = f LFnl U | ˙ ˙ L f = L f
37 1 2 3 4 5 14 15 17 6 34 20 21 35 36 18 9 11 lcfrlem10 φ J Y LFnl U
38 1 2 3 4 5 6 7 8 9 10 11 12 13 lcfrlem22 φ B A
39 4 8 28 38 lsatssv φ B V
40 39 19 sseldd φ I V
41 15 17 4 34 lflcl U LMod J Y LFnl U I V J Y I R
42 28 37 40 41 syl3anc φ J Y I R
43 17 16 23 drnginvrcl S DivRing J Y I R J Y I Q F J Y I R
44 33 42 22 43 syl3anc φ F J Y I R
45 eqid S = S
46 17 45 16 ringrz S Ring F J Y I R F J Y I S Q = Q
47 30 44 46 syl2anc φ F J Y I S Q = Q
48 27 47 eqtrd φ F J Y I S J X I = Q
49 48 oveq1d φ F J Y I S J X I D J Y = Q D J Y
50 eqid D = D
51 34 15 16 21 50 35 28 37 ldual0vs φ Q D J Y = 0 D
52 49 51 eqtrd φ F J Y I S J X I D J Y = 0 D
53 52 oveq2d φ J X - ˙ F J Y I S J X I D J Y = J X - ˙ 0 D
54 21 28 ldualgrp φ D Grp
55 eqid Base D = Base D
56 1 2 3 4 5 14 15 17 6 34 20 21 35 36 18 9 10 lcfrlem10 φ J X LFnl U
57 34 21 55 28 56 ldualelvbase φ J X Base D
58 55 35 24 grpsubid1 D Grp J X Base D J X - ˙ 0 D = J X
59 54 57 58 syl2anc φ J X - ˙ 0 D = J X
60 53 59 eqtrd φ J X - ˙ F J Y I S J X I D J Y = J X
61 25 60 syl5eq φ C = J X
62 1 2 3 4 5 14 15 17 6 34 20 21 35 36 18 9 10 lcfrlem13 φ J X f LFnl U | ˙ ˙ L f = L f 0 D
63 eldifsni J X f LFnl U | ˙ ˙ L f = L f 0 D J X 0 D
64 62 63 syl φ J X 0 D
65 61 64 eqnetrd φ C 0 D