Metamath Proof Explorer


Theorem lgsdilem2

Description: Lemma for lgsdi . (Contributed by Mario Carneiro, 4-Feb-2015)

Ref Expression
Hypotheses lgsdilem2.1 φA
lgsdilem2.2 φM
lgsdilem2.3 φN
lgsdilem2.4 φM0
lgsdilem2.5 φN0
lgsdilem2.6 F=nifnA/LnnpCntM1
Assertion lgsdilem2 φseq1×FM=seq1×F M N

Proof

Step Hyp Ref Expression
1 lgsdilem2.1 φA
2 lgsdilem2.2 φM
3 lgsdilem2.3 φN
4 lgsdilem2.4 φM0
5 lgsdilem2.5 φN0
6 lgsdilem2.6 F=nifnA/LnnpCntM1
7 mulrid kk1=k
8 7 adantl φkk1=k
9 nnabscl MM0M
10 2 4 9 syl2anc φM
11 nnuz =1
12 10 11 eleqtrdi φM1
13 10 nnzd φM
14 2 3 zmulcld φ M N
15 2 zcnd φM
16 3 zcnd φN
17 15 16 4 5 mulne0d φ M N0
18 nnabscl M N M N0 M N
19 14 17 18 syl2anc φ M N
20 19 nnzd φ M N
21 15 abscld φM
22 16 abscld φN
23 15 absge0d φ0M
24 nnabscl NN0N
25 3 5 24 syl2anc φN
26 25 nnge1d φ1N
27 21 22 23 26 lemulge11d φMMN
28 15 16 absmuld φ M N=MN
29 27 28 breqtrrd φM M N
30 eluz2 M NMM M NM M N
31 13 20 29 30 syl3anbrc φ M NM
32 6 lgsfcl3 AMM0F:
33 1 2 4 32 syl3anc φF:
34 elfznn k1Mk
35 ffvelcdm F:kFk
36 33 34 35 syl2an φk1MFk
37 36 zcnd φk1MFk
38 mulcl kxkx
39 38 adantl φkxkx
40 12 37 39 seqcl φseq1×FM
41 10 peano2nnd φM+1
42 elfzuz kM+1 M NkM+1
43 eluznn M+1kM+1k
44 41 42 43 syl2an φkM+1 M Nk
45 eleq1w n=knk
46 oveq2 n=kA/Ln=A/Lk
47 oveq1 n=knpCntM=kpCntM
48 46 47 oveq12d n=kA/LnnpCntM=A/LkkpCntM
49 45 48 ifbieq1d n=kifnA/LnnpCntM1=ifkA/LkkpCntM1
50 ovex A/LkkpCntMV
51 1ex 1V
52 50 51 ifex ifkA/LkkpCntM1V
53 49 6 52 fvmpt kFk=ifkA/LkkpCntM1
54 44 53 syl φkM+1 M NFk=ifkA/LkkpCntM1
55 simpr φkM+1 M Nkk
56 2 ad2antrr φkM+1 M NkM
57 zq MM
58 56 57 syl φkM+1 M NkM
59 pcabs kMkpCntM=kpCntM
60 55 58 59 syl2anc φkM+1 M NkkpCntM=kpCntM
61 elfzle1 kM+1 M NM+1k
62 61 adantl φkM+1 M NM+1k
63 elfzelz kM+1 M Nk
64 zltp1le MkM<kM+1k
65 13 63 64 syl2an φkM+1 M NM<kM+1k
66 62 65 mpbird φkM+1 M NM<k
67 21 adantr φkM+1 M NM
68 63 adantl φkM+1 M Nk
69 68 zred φkM+1 M Nk
70 67 69 ltnled φkM+1 M NM<k¬kM
71 66 70 mpbid φkM+1 M N¬kM
72 71 adantr φkM+1 M Nk¬kM
73 prmz kk
74 73 adantl φkM+1 M Nkk
75 4 ad2antrr φkM+1 M NkM0
76 56 75 9 syl2anc φkM+1 M NkM
77 dvdsle kMkMkM
78 74 76 77 syl2anc φkM+1 M NkkMkM
79 72 78 mtod φkM+1 M Nk¬kM
80 pceq0 kMkpCntM=0¬kM
81 55 76 80 syl2anc φkM+1 M NkkpCntM=0¬kM
82 79 81 mpbird φkM+1 M NkkpCntM=0
83 60 82 eqtr3d φkM+1 M NkkpCntM=0
84 83 oveq2d φkM+1 M NkA/LkkpCntM=A/Lk0
85 1 ad2antrr φkM+1 M NkA
86 lgscl AkA/Lk
87 85 74 86 syl2anc φkM+1 M NkA/Lk
88 87 zcnd φkM+1 M NkA/Lk
89 88 exp0d φkM+1 M NkA/Lk0=1
90 84 89 eqtrd φkM+1 M NkA/LkkpCntM=1
91 90 ifeq1da φkM+1 M NifkA/LkkpCntM1=ifk11
92 ifid ifk11=1
93 91 92 eqtrdi φkM+1 M NifkA/LkkpCntM1=1
94 54 93 eqtrd φkM+1 M NFk=1
95 8 12 31 40 94 seqid2 φseq1×FM=seq1×F M N