Metamath Proof Explorer


Theorem limsupequzlem

Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupequzlem.1 kφ
limsupequzlem.2 φM
limsupequzlem.4 φFFnM
limsupequzlem.5 φN
limsupequzlem.6 φGFnN
limsupequzlem.7 φK
limsupequzlem.8 φkKFk=Gk
Assertion limsupequzlem φlim supF=lim supG

Proof

Step Hyp Ref Expression
1 limsupequzlem.1 kφ
2 limsupequzlem.2 φM
3 limsupequzlem.4 φFFnM
4 limsupequzlem.5 φN
5 limsupequzlem.6 φGFnN
6 limsupequzlem.7 φK
7 limsupequzlem.8 φkKFk=Gk
8 eqid K=K
9 6 adantr φksupMNK*<K
10 eluzelz ksupMNK*<k
11 10 adantl φksupMNK*<k
12 6 zred φK
13 12 adantr φksupMNK*<K
14 13 rexrd φksupMNK*<K*
15 zssxr *
16 tpssi MNKMNK
17 2 4 6 16 syl3anc φMNK
18 xrltso <Or*
19 18 a1i φ<Or*
20 tpfi MNKFin
21 20 a1i φMNKFin
22 2 tpnzd φMNK
23 15 a1i φ*
24 17 23 sstrd φMNK*
25 fisupcl <Or*MNKFinMNKMNK*supMNK*<MNK
26 19 21 22 24 25 syl13anc φsupMNK*<MNK
27 17 26 sseldd φsupMNK*<
28 15 27 sselid φsupMNK*<*
29 28 adantr φksupMNK*<supMNK*<*
30 eluzelre ksupMNK*<k
31 30 adantl φksupMNK*<k
32 31 rexrd φksupMNK*<k*
33 tpid3g KKMNK
34 6 33 syl φKMNK
35 eqid supMNK*<=supMNK*<
36 24 34 35 supxrubd φKsupMNK*<
37 36 adantr φksupMNK*<KsupMNK*<
38 eluzle ksupMNK*<supMNK*<k
39 38 adantl φksupMNK*<supMNK*<k
40 14 29 32 37 39 xrletrd φksupMNK*<Kk
41 8 9 11 40 eluzd φksupMNK*<kK
42 41 7 syldan φksupMNK*<Fk=Gk
43 1 42 ralrimia φksupMNK*<Fk=Gk
44 eqid M=M
45 tpid1g MMMNK
46 2 45 syl φMMNK
47 24 46 35 supxrubd φMsupMNK*<
48 44 2 27 47 eluzd φsupMNK*<M
49 uzss supMNK*<MsupMNK*<M
50 48 49 syl φsupMNK*<M
51 eqid N=N
52 tpid2g NNMNK
53 4 52 syl φNMNK
54 24 53 35 supxrubd φNsupMNK*<
55 51 4 27 54 eluzd φsupMNK*<N
56 uzss supMNK*<NsupMNK*<N
57 55 56 syl φsupMNK*<N
58 fvreseq0 FFnMGFnNsupMNK*<MsupMNK*<NFsupMNK*<=GsupMNK*<ksupMNK*<Fk=Gk
59 3 5 50 57 58 syl22anc φFsupMNK*<=GsupMNK*<ksupMNK*<Fk=Gk
60 43 59 mpbird φFsupMNK*<=GsupMNK*<
61 60 fveq2d φlim supFsupMNK*<=lim supGsupMNK*<
62 eqid supMNK*<=supMNK*<
63 fvexd φMV
64 3 63 fnexd φFV
65 3 fndmd φdomF=M
66 uzssz M
67 65 66 eqsstrdi φdomF
68 27 62 64 67 limsupresuz2 φlim supFsupMNK*<=lim supF
69 fvexd φNV
70 5 69 fnexd φGV
71 5 fndmd φdomG=N
72 uzssz N
73 71 72 eqsstrdi φdomG
74 27 62 70 73 limsupresuz2 φlim supGsupMNK*<=lim supG
75 61 68 74 3eqtr3d φlim supF=lim supG