Metamath Proof Explorer


Theorem log2tlbnd

Description: Bound the error term in the series of log2cnv . (Contributed by Mario Carneiro, 7-Apr-2015)

Ref Expression
Assertion log2tlbnd N0log2n=0N1232n+19n0342 N+19N

Proof

Step Hyp Ref Expression
1 fzfid N00N1Fin
2 elfznn0 n0N1n0
3 2re 2
4 3nn 3
5 2nn0 20
6 simpr N0n0n0
7 nn0mulcl 20n02n0
8 5 6 7 sylancr N0n02n0
9 nn0p1nn 2n02n+1
10 8 9 syl N0n02n+1
11 nnmulcl 32n+132n+1
12 4 10 11 sylancr N0n032n+1
13 9nn 9
14 nnexpcl 9n09n
15 13 6 14 sylancr N0n09n
16 12 15 nnmulcld N0n032n+19n
17 nndivre 232n+19n232n+19n
18 3 16 17 sylancr N0n0232n+19n
19 18 recnd N0n0232n+19n
20 2 19 sylan2 N0n0N1232n+19n
21 1 20 fsumcl N0n=0N1232n+19n
22 eqid N=N
23 nn0z N0N
24 eluznn0 N0nNn0
25 oveq2 k=n2k=2n
26 25 oveq1d k=n2k+1=2n+1
27 26 oveq2d k=n32k+1=32n+1
28 oveq2 k=n9k=9n
29 27 28 oveq12d k=n32k+19k=32n+19n
30 29 oveq2d k=n232k+19k=232n+19n
31 eqid k0232k+19k=k0232k+19k
32 ovex 232n+19nV
33 30 31 32 fvmpt n0k0232k+19kn=232n+19n
34 24 33 syl N0nNk0232k+19kn=232n+19n
35 24 18 syldan N0nN232n+19n
36 31 log2cnv seq0+k0232k+19klog2
37 seqex seq0+k0232k+19kV
38 fvex log2V
39 37 38 breldm seq0+k0232k+19klog2seq0+k0232k+19kdom
40 36 39 mp1i N0seq0+k0232k+19kdom
41 nn0uz 0=0
42 id N0N0
43 33 adantl N0n0k0232k+19kn=232n+19n
44 43 19 eqeltrd N0n0k0232k+19kn
45 41 42 44 iserex N0seq0+k0232k+19kdomseqN+k0232k+19kdom
46 40 45 mpbid N0seqN+k0232k+19kdom
47 22 23 34 35 46 isumrecl N0nN232n+19n
48 47 recnd N0nN232n+19n
49 0zd N00
50 36 a1i N0seq0+k0232k+19klog2
51 41 49 43 19 50 isumclim N0n0232n+19n=log2
52 41 22 42 43 19 40 isumsplit N0n0232n+19n=n=0N1232n+19n+nN232n+19n
53 51 52 eqtr3d N0log2=n=0N1232n+19n+nN232n+19n
54 21 48 53 mvrladdd N0log2n=0N1232n+19n=nN232n+19n
55 3 a1i N0n02
56 0le2 02
57 56 a1i N0n002
58 16 nnred N0n032n+19n
59 16 nngt0d N0n00<32n+19n
60 divge0 20232n+19n0<32n+19n0232n+19n
61 55 57 58 59 60 syl22anc N0n00232n+19n
62 24 61 syldan N0nN0232n+19n
63 22 23 34 35 46 62 isumge0 N00nN232n+19n
64 oveq2 k=n19k=19n
65 64 oveq2d k=n232 N+119k=232 N+119n
66 eqid k0232 N+119k=k0232 N+119k
67 ovex 232 N+119nV
68 65 66 67 fvmpt n0k0232 N+119kn=232 N+119n
69 68 adantl N0n0k0232 N+119kn=232 N+119n
70 9cn 9
71 70 a1i N0n09
72 13 nnne0i 90
73 72 a1i N0n090
74 nn0z n0n
75 74 adantl N0n0n
76 71 73 75 exprecd N0n019n=19n
77 76 oveq2d N0n0232 N+119n=232 N+119n
78 nn0mulcl 20N02 N0
79 5 78 mpan N02 N0
80 nn0p1nn 2 N02 N+1
81 79 80 syl N02 N+1
82 nnmulcl 32 N+132 N+1
83 4 81 82 sylancr N032 N+1
84 nndivre 232 N+1232 N+1
85 3 83 84 sylancr N0232 N+1
86 85 recnd N0232 N+1
87 86 adantr N0n0232 N+1
88 15 nncnd N0n09n
89 15 nnne0d N0n09n0
90 87 88 89 divrecd N0n0232 N+19n=232 N+119n
91 2cnd N0n02
92 83 adantr N0n032 N+1
93 92 nncnd N0n032 N+1
94 92 nnne0d N0n032 N+10
95 91 93 88 94 89 divdiv1d N0n0232 N+19n=232 N+19n
96 77 90 95 3eqtr2d N0n0232 N+119n=232 N+19n
97 69 96 eqtrd N0n0k0232 N+119kn=232 N+19n
98 24 97 syldan N0nNk0232 N+119kn=232 N+19n
99 92 15 nnmulcld N0n032 N+19n
100 nndivre 232 N+19n232 N+19n
101 3 99 100 sylancr N0n0232 N+19n
102 24 101 syldan N0nN232 N+19n
103 79 adantr N0nN2 N0
104 103 nn0red N0nN2 N
105 5 24 7 sylancr N0nN2n0
106 105 nn0red N0nN2n
107 1red N0nN1
108 eluzle nNNn
109 108 adantl N0nNNn
110 nn0re N0N
111 110 adantr N0nNN
112 24 nn0red N0nNn
113 3 a1i N0nN2
114 2pos 0<2
115 114 a1i N0nN0<2
116 lemul2 Nn20<2Nn2 N2n
117 111 112 113 115 116 syl112anc N0nNNn2 N2n
118 109 117 mpbid N0nN2 N2n
119 104 106 107 118 leadd1dd N0nN2 N+12n+1
120 81 adantr N0nN2 N+1
121 120 nnred N0nN2 N+1
122 24 10 syldan N0nN2n+1
123 122 nnred N0nN2n+1
124 3re 3
125 124 a1i N0nN3
126 3pos 0<3
127 126 a1i N0nN0<3
128 lemul2 2 N+12n+130<32 N+12n+132 N+132n+1
129 121 123 125 127 128 syl112anc N0nN2 N+12n+132 N+132n+1
130 119 129 mpbid N0nN32 N+132n+1
131 83 adantr N0nN32 N+1
132 131 nnred N0nN32 N+1
133 24 12 syldan N0nN32n+1
134 133 nnred N0nN32n+1
135 13 24 14 sylancr N0nN9n
136 135 nnred N0nN9n
137 135 nngt0d N0nN0<9n
138 lemul1 32 N+132n+19n0<9n32 N+132n+132 N+19n32n+19n
139 132 134 136 137 138 syl112anc N0nN32 N+132n+132 N+19n32n+19n
140 130 139 mpbid N0nN32 N+19n32n+19n
141 24 99 syldan N0nN32 N+19n
142 141 nnred N0nN32 N+19n
143 141 nngt0d N0nN0<32 N+19n
144 24 58 syldan N0nN32n+19n
145 24 59 syldan N0nN0<32n+19n
146 lediv2 32 N+19n0<32 N+19n32n+19n0<32n+19n20<232 N+19n32n+19n232n+19n232 N+19n
147 142 143 144 145 113 115 146 syl222anc N0nN32 N+19n32n+19n232n+19n232 N+19n
148 140 147 mpbid N0nN232n+19n232 N+19n
149 9re 9
150 149 72 rereccli 19
151 150 recni 19
152 151 a1i N019
153 0re 0
154 9pos 0<9
155 149 154 recgt0ii 0<19
156 153 150 155 ltleii 019
157 absid 1901919=19
158 150 156 157 mp2an 19=19
159 1lt9 1<9
160 recgt1i 91<90<1919<1
161 149 159 160 mp2an 0<1919<1
162 161 simpri 19<1
163 158 162 eqbrtri 19<1
164 163 a1i N019<1
165 eqid k019k=k019k
166 ovex 19nV
167 64 165 166 fvmpt n0k019kn=19n
168 24 167 syl N0nNk019kn=19n
169 152 164 42 168 geolim2 N0seqN+k019k19N119
170 70 a1i N09
171 72 a1i N090
172 170 171 23 exprecd N019N=19N
173 70 72 dividi 99=1
174 173 oveq1i 9919=119
175 ax-1cn 1
176 70 72 pm3.2i 990
177 divsubdir 91990919=9919
178 70 175 176 177 mp3an 919=9919
179 9m1e8 91=8
180 179 oveq1i 919=89
181 178 180 eqtr3i 9919=89
182 174 181 eqtr3i 119=89
183 182 a1i N0119=89
184 172 183 oveq12d N019N119=19N89
185 175 a1i N01
186 nnexpcl 9N09N
187 13 186 mpan N09N
188 187 nncnd N09N
189 8cn 8
190 189 70 72 divcli 89
191 190 a1i N089
192 187 nnne0d N09N0
193 8nn 8
194 193 nnne0i 80
195 189 70 194 72 divne0i 890
196 195 a1i N0890
197 185 188 191 192 196 divdiv32d N019N89=1899N
198 recdiv 880990189=98
199 189 194 70 72 198 mp4an 189=98
200 199 oveq1i 1899N=989N
201 189 a1i N08
202 194 a1i N080
203 170 201 188 202 192 divdiv1d N0989N=989N
204 200 203 eqtrid N01899N=989N
205 184 197 204 3eqtrd N019N119=989N
206 169 205 breqtrd N0seqN+k019k989N
207 expcl 19n019n
208 151 24 207 sylancr N0nN19n
209 168 208 eqeltrd N0nNk019kn
210 24 68 syl N0nNk0232 N+119kn=232 N+119n
211 168 oveq2d N0nN232 N+1k019kn=232 N+119n
212 210 211 eqtr4d N0nNk0232 N+119kn=232 N+1k019kn
213 22 23 86 206 209 212 isermulc2 N0seqN+k0232 N+119k232 N+1989N
214 seqex seqN+k0232 N+119kV
215 ovex 232 N+1989NV
216 214 215 breldm seqN+k0232 N+119k232 N+1989NseqN+k0232 N+119kdom
217 213 216 syl N0seqN+k0232 N+119kdom
218 22 23 34 35 98 102 148 46 217 isumle N0nN232n+19nnN232 N+19n
219 102 recnd N0nN232 N+19n
220 3cn 3
221 4cn 4
222 2cn 2
223 4ne0 40
224 3ne0 30
225 2ne0 20
226 220 221 222 220 223 224 225 divdivdivi 3423=3342
227 3t3e9 33=9
228 4t2e8 42=8
229 227 228 oveq12i 3342=98
230 226 229 eqtri 3423=98
231 230 oveq2i 233423=2398
232 220 221 223 divcli 34
233 222 220 224 divcli 23
234 222 220 225 224 divne0i 230
235 232 233 234 divcan2i 233423=34
236 231 235 eqtr3i 2398=34
237 236 oveq1i 23982 N+19N=342 N+19N
238 2cnd N02
239 220 a1i N03
240 81 nncnd N02 N+1
241 224 a1i N030
242 81 nnne0d N02 N+10
243 238 239 240 241 242 divdiv1d N0232 N+1=232 N+1
244 243 203 oveq12d N0232 N+1989N=232 N+1989N
245 233 a1i N023
246 70 189 194 divcli 98
247 246 a1i N098
248 245 240 247 188 242 192 divmuldivd N0232 N+1989N=23982 N+19N
249 244 248 eqtr3d N0232 N+1989N=23982 N+19N
250 221 a1i N04
251 250 240 188 mulassd N042 N+19N=42 N+19N
252 251 oveq2d N0342 N+19N=342 N+19N
253 81 187 nnmulcld N02 N+19N
254 253 nncnd N02 N+19N
255 223 a1i N040
256 253 nnne0d N02 N+19N0
257 239 250 254 255 256 divdiv1d N0342 N+19N=342 N+19N
258 252 257 eqtr4d N0342 N+19N=342 N+19N
259 237 249 258 3eqtr4a N0232 N+1989N=342 N+19N
260 213 259 breqtrd N0seqN+k0232 N+119k342 N+19N
261 22 23 98 219 260 isumclim N0nN232 N+19n=342 N+19N
262 218 261 breqtrd N0nN232n+19n342 N+19N
263 4nn 4
264 nnmulcl 42 N+142 N+1
265 263 81 264 sylancr N042 N+1
266 265 187 nnmulcld N042 N+19N
267 nndivre 342 N+19N342 N+19N
268 124 266 267 sylancr N0342 N+19N
269 elicc2 0342 N+19NnN232n+19n0342 N+19NnN232n+19n0nN232n+19nnN232n+19n342 N+19N
270 153 268 269 sylancr N0nN232n+19n0342 N+19NnN232n+19n0nN232n+19nnN232n+19n342 N+19N
271 47 63 262 270 mpbir3and N0nN232n+19n0342 N+19N
272 54 271 eqeltrd N0log2n=0N1232n+19n0342 N+19N