Metamath Proof Explorer


Theorem logfaclbnd

Description: A lower bound on the logarithm of a factorial. (Contributed by Mario Carneiro, 16-Apr-2016)

Ref Expression
Assertion logfaclbnd A+AlogA2logA!

Proof

Step Hyp Ref Expression
1 rpcn A+A
2 1 times2d A+A2=A+A
3 2 oveq2d A+AlogAA2=AlogAA+A
4 relogcl A+logA
5 4 recnd A+logA
6 2cnd A+2
7 1 5 6 subdid A+AlogA2=AlogAA2
8 rpre A+A
9 8 4 remulcld A+AlogA
10 9 recnd A+AlogA
11 10 1 1 subsub4d A+AlogA-A-A=AlogAA+A
12 3 7 11 3eqtr4d A+AlogA2=AlogA-A-A
13 9 8 resubcld A+AlogAA
14 fzfid A+1AFin
15 fzfid A+n1A1nFin
16 elfznn d1nd
17 16 adantl A+n1Ad1nd
18 17 nnrecred A+n1Ad1n1d
19 15 18 fsumrecl A+n1Ad=1n1d
20 14 19 fsumrecl A+n=1Ad=1n1d
21 rprege0 A+A0A
22 flge0nn0 A0AA0
23 21 22 syl A+A0
24 23 faccld A+A!
25 24 nnrpd A+A!+
26 25 relogcld A+logA!
27 26 8 readdcld A+logA!+A
28 elfznn d1Ad
29 28 adantl A+d1Ad
30 29 nnrecred A+d1A1d
31 14 30 fsumrecl A+d=1A1d
32 8 31 remulcld A+Ad=1A1d
33 reflcl AA
34 8 33 syl A+A
35 32 34 resubcld A+Ad=1A1dA
36 harmoniclbnd A+logAd=1A1d
37 rpregt0 A+A0<A
38 lemul2 logAd=1A1dA0<AlogAd=1A1dAlogAAd=1A1d
39 4 31 37 38 syl3anc A+logAd=1A1dAlogAAd=1A1d
40 36 39 mpbid A+AlogAAd=1A1d
41 flle AAA
42 8 41 syl A+AA
43 9 34 32 8 40 42 le2subd A+AlogAAAd=1A1dA
44 28 nnrecred d1A1d
45 remulcl A1dA1d
46 8 44 45 syl2an A+d1AA1d
47 peano2rem A1dA1d1
48 46 47 syl A+d1AA1d1
49 fzfid A+d1AdAFin
50 30 adantr A+d1AndA1d
51 49 50 fsumrecl A+d1An=dA1d
52 8 adantr A+d1AA
53 52 33 syl A+d1AA
54 peano2re AA+1
55 53 54 syl A+d1AA+1
56 29 nnred A+d1Ad
57 fllep1 AAA+1
58 8 57 syl A+AA+1
59 58 adantr A+d1AAA+1
60 52 55 56 59 lesub1dd A+d1AAdA+1-d
61 52 56 resubcld A+d1AAd
62 55 56 resubcld A+d1AA+1-d
63 29 nnrpd A+d1Ad+
64 63 rpreccld A+d1A1d+
65 61 62 64 lemul1d A+d1AAdA+1-dAd1dA+1-d1d
66 60 65 mpbid A+d1AAd1dA+1-d1d
67 1 adantr A+d1AA
68 29 nncnd A+d1Ad
69 30 recnd A+d1A1d
70 67 68 69 subdird A+d1AAd1d=A1dd1d
71 29 nnne0d A+d1Ad0
72 68 71 recidd A+d1Ad1d=1
73 72 oveq2d A+d1AA1dd1d=A1d1
74 70 73 eqtr2d A+d1AA1d1=Ad1d
75 fsumconst dAFin1dn=dA1d=dA1d
76 49 69 75 syl2anc A+d1An=dA1d=dA1d
77 elfzuz3 d1AAd
78 77 adantl A+d1AAd
79 hashfz AddA=A-d+1
80 78 79 syl A+d1AdA=A-d+1
81 34 recnd A+A
82 81 adantr A+d1AA
83 1cnd A+d1A1
84 82 83 68 addsubd A+d1AA+1-d=A-d+1
85 80 84 eqtr4d A+d1AdA=A+1-d
86 85 oveq1d A+d1AdA1d=A+1-d1d
87 76 86 eqtrd A+d1An=dA1d=A+1-d1d
88 66 74 87 3brtr4d A+d1AA1d1n=dA1d
89 14 48 51 88 fsumle A+d=1AA1d1d=1An=dA1d
90 14 1 69 fsummulc2 A+Ad=1A1d=d=1AA1d
91 ax-1cn 1
92 fsumconst 1AFin1d=1A1=1A1
93 14 91 92 sylancl A+d=1A1=1A1
94 hashfz1 A01A=A
95 23 94 syl A+1A=A
96 95 oveq1d A+1A1=A1
97 81 mulridd A+A1=A
98 93 96 97 3eqtrrd A+A=d=1A1
99 90 98 oveq12d A+Ad=1A1dA=d=1AA1dd=1A1
100 46 recnd A+d1AA1d
101 14 100 83 fsumsub A+d=1AA1d1=d=1AA1dd=1A1
102 99 101 eqtr4d A+Ad=1A1dA=d=1AA1d1
103 eqid 1=1
104 103 uztrn2 d1ndn1
105 104 adantl A+d1ndn1
106 105 biantrurd A+d1ndAnn1An
107 uzss ndnd
108 107 ad2antll A+d1ndnd
109 108 sseld A+d1ndAnAd
110 109 pm4.71rd A+d1ndAnAdAn
111 106 110 bitr3d A+d1ndn1AnAdAn
112 111 pm5.32da A+d1ndn1And1ndAdAn
113 ancom n1And1ndd1ndn1An
114 an4 d1AdndAnd1ndAdAn
115 112 113 114 3bitr4g A+n1And1ndd1AdndAn
116 elfzuzb n1An1An
117 elfzuzb d1nd1nd
118 116 117 anbi12i n1Ad1nn1And1nd
119 elfzuzb d1Ad1Ad
120 elfzuzb ndAndAn
121 119 120 anbi12i d1AndAd1AdndAn
122 115 118 121 3bitr4g A+n1Ad1nd1AndA
123 18 recnd A+n1Ad1n1d
124 123 anasss A+n1Ad1n1d
125 14 14 15 122 124 fsumcom2 A+n=1Ad=1n1d=d=1An=dA1d
126 89 102 125 3brtr4d A+Ad=1A1dAn=1Ad=1n1d
127 13 35 20 43 126 letrd A+AlogAAn=1Ad=1n1d
128 26 34 readdcld A+logA!+A
129 elfznn n1An
130 129 adantl A+n1An
131 130 nnrpd A+n1An+
132 131 relogcld A+n1Alogn
133 peano2re lognlogn+1
134 132 133 syl A+n1Alogn+1
135 nnz nn
136 flid nn=n
137 135 136 syl nn=n
138 137 oveq2d n1n=1n
139 138 sumeq1d nd=1n1d=d=1n1d
140 nnre nn
141 nnge1 n1n
142 harmonicubnd n1nd=1n1dlogn+1
143 140 141 142 syl2anc nd=1n1dlogn+1
144 139 143 eqbrtrrd nd=1n1dlogn+1
145 130 144 syl A+n1Ad=1n1dlogn+1
146 14 19 134 145 fsumle A+n=1Ad=1n1dn=1Alogn+1
147 132 recnd A+n1Alogn
148 1cnd A+n1A1
149 14 147 148 fsumadd A+n=1Alogn+1=n=1Alogn+n=1A1
150 logfac A0logA!=n=1Alogn
151 23 150 syl A+logA!=n=1Alogn
152 fsumconst 1AFin1n=1A1=1A1
153 14 91 152 sylancl A+n=1A1=1A1
154 153 96 97 3eqtrrd A+A=n=1A1
155 151 154 oveq12d A+logA!+A=n=1Alogn+n=1A1
156 149 155 eqtr4d A+n=1Alogn+1=logA!+A
157 146 156 breqtrd A+n=1Ad=1n1dlogA!+A
158 34 8 26 42 leadd2dd A+logA!+AlogA!+A
159 20 128 27 157 158 letrd A+n=1Ad=1n1dlogA!+A
160 13 20 27 127 159 letrd A+AlogAAlogA!+A
161 13 8 26 lesubaddd A+AlogA-A-AlogA!AlogAAlogA!+A
162 160 161 mpbird A+AlogA-A-AlogA!
163 12 162 eqbrtrd A+AlogA2logA!