Metamath Proof Explorer


Theorem lspsolv

Description: If X is in the span of A u. { Y } but not A , then Y is in the span of A u. { X } . (Contributed by Mario Carneiro, 25-Jun-2014)

Ref Expression
Hypotheses lspsolv.v V=BaseW
lspsolv.s S=LSubSpW
lspsolv.n N=LSpanW
Assertion lspsolv WLVecAVYVXNAYNAYNAX

Proof

Step Hyp Ref Expression
1 lspsolv.v V=BaseW
2 lspsolv.s S=LSubSpW
3 lspsolv.n N=LSpanW
4 eqid ScalarW=ScalarW
5 eqid BaseScalarW=BaseScalarW
6 eqid +W=+W
7 eqid W=W
8 eqid zV|rBaseScalarWz+WrWYNA=zV|rBaseScalarWz+WrWYNA
9 lveclmod WLVecWLMod
10 9 adantr WLVecAVYVXNAYNAWLMod
11 simpr1 WLVecAVYVXNAYNAAV
12 simpr2 WLVecAVYVXNAYNAYV
13 simpr3 WLVecAVYVXNAYNAXNAYNA
14 13 eldifad WLVecAVYVXNAYNAXNAY
15 1 2 3 4 5 6 7 8 10 11 12 14 lspsolvlem WLVecAVYVXNAYNArBaseScalarWX+WrWYNA
16 4 lvecdrng WLVecScalarWDivRing
17 16 ad2antrr WLVecAVYVXNAYNArBaseScalarWX+WrWYNAScalarWDivRing
18 simprl WLVecAVYVXNAYNArBaseScalarWX+WrWYNArBaseScalarW
19 10 adantr WLVecAVYVXNAYNArBaseScalarWX+WrWYNAWLMod
20 12 adantr WLVecAVYVXNAYNArBaseScalarWX+WrWYNAYV
21 eqid 0ScalarW=0ScalarW
22 eqid 0W=0W
23 1 4 7 21 22 lmod0vs WLModYV0ScalarWWY=0W
24 19 20 23 syl2anc WLVecAVYVXNAYNArBaseScalarWX+WrWYNA0ScalarWWY=0W
25 24 oveq2d WLVecAVYVXNAYNArBaseScalarWX+WrWYNAX+W0ScalarWWY=X+W0W
26 11 adantr WLVecAVYVXNAYNArBaseScalarWX+WrWYNAAV
27 20 snssd WLVecAVYVXNAYNArBaseScalarWX+WrWYNAYV
28 26 27 unssd WLVecAVYVXNAYNArBaseScalarWX+WrWYNAAYV
29 1 3 lspssv WLModAYVNAYV
30 19 28 29 syl2anc WLVecAVYVXNAYNArBaseScalarWX+WrWYNANAYV
31 30 ssdifssd WLVecAVYVXNAYNArBaseScalarWX+WrWYNANAYNAV
32 13 adantr WLVecAVYVXNAYNArBaseScalarWX+WrWYNAXNAYNA
33 31 32 sseldd WLVecAVYVXNAYNArBaseScalarWX+WrWYNAXV
34 1 6 22 lmod0vrid WLModXVX+W0W=X
35 19 33 34 syl2anc WLVecAVYVXNAYNArBaseScalarWX+WrWYNAX+W0W=X
36 25 35 eqtrd WLVecAVYVXNAYNArBaseScalarWX+WrWYNAX+W0ScalarWWY=X
37 36 32 eqeltrd WLVecAVYVXNAYNArBaseScalarWX+WrWYNAX+W0ScalarWWYNAYNA
38 37 eldifbd WLVecAVYVXNAYNArBaseScalarWX+WrWYNA¬X+W0ScalarWWYNA
39 simprr WLVecAVYVXNAYNArBaseScalarWX+WrWYNAX+WrWYNA
40 oveq1 r=0ScalarWrWY=0ScalarWWY
41 40 oveq2d r=0ScalarWX+WrWY=X+W0ScalarWWY
42 41 eleq1d r=0ScalarWX+WrWYNAX+W0ScalarWWYNA
43 39 42 syl5ibcom WLVecAVYVXNAYNArBaseScalarWX+WrWYNAr=0ScalarWX+W0ScalarWWYNA
44 43 necon3bd WLVecAVYVXNAYNArBaseScalarWX+WrWYNA¬X+W0ScalarWWYNAr0ScalarW
45 38 44 mpd WLVecAVYVXNAYNArBaseScalarWX+WrWYNAr0ScalarW
46 eqid ScalarW=ScalarW
47 eqid 1ScalarW=1ScalarW
48 eqid invrScalarW=invrScalarW
49 5 21 46 47 48 drnginvrl ScalarWDivRingrBaseScalarWr0ScalarWinvrScalarWrScalarWr=1ScalarW
50 17 18 45 49 syl3anc WLVecAVYVXNAYNArBaseScalarWX+WrWYNAinvrScalarWrScalarWr=1ScalarW
51 50 oveq1d WLVecAVYVXNAYNArBaseScalarWX+WrWYNAinvrScalarWrScalarWrWY=1ScalarWWY
52 5 21 48 drnginvrcl ScalarWDivRingrBaseScalarWr0ScalarWinvrScalarWrBaseScalarW
53 17 18 45 52 syl3anc WLVecAVYVXNAYNArBaseScalarWX+WrWYNAinvrScalarWrBaseScalarW
54 1 4 7 5 46 lmodvsass WLModinvrScalarWrBaseScalarWrBaseScalarWYVinvrScalarWrScalarWrWY=invrScalarWrWrWY
55 19 53 18 20 54 syl13anc WLVecAVYVXNAYNArBaseScalarWX+WrWYNAinvrScalarWrScalarWrWY=invrScalarWrWrWY
56 1 4 7 47 lmodvs1 WLModYV1ScalarWWY=Y
57 19 20 56 syl2anc WLVecAVYVXNAYNArBaseScalarWX+WrWYNA1ScalarWWY=Y
58 51 55 57 3eqtr3d WLVecAVYVXNAYNArBaseScalarWX+WrWYNAinvrScalarWrWrWY=Y
59 33 snssd WLVecAVYVXNAYNArBaseScalarWX+WrWYNAXV
60 26 59 unssd WLVecAVYVXNAYNArBaseScalarWX+WrWYNAAXV
61 1 2 3 lspcl WLModAXVNAXS
62 19 60 61 syl2anc WLVecAVYVXNAYNArBaseScalarWX+WrWYNANAXS
63 1 4 7 5 lmodvscl WLModrBaseScalarWYVrWYV
64 19 18 20 63 syl3anc WLVecAVYVXNAYNArBaseScalarWX+WrWYNArWYV
65 eqid -W=-W
66 1 6 65 lmodvpncan WLModrWYVXVrWY+WX-WX=rWY
67 19 64 33 66 syl3anc WLVecAVYVXNAYNArBaseScalarWX+WrWYNArWY+WX-WX=rWY
68 1 6 lmodcom WLModrWYVXVrWY+WX=X+WrWY
69 19 64 33 68 syl3anc WLVecAVYVXNAYNArBaseScalarWX+WrWYNArWY+WX=X+WrWY
70 ssun1 AAX
71 70 a1i WLVecAVYVXNAYNArBaseScalarWX+WrWYNAAAX
72 1 3 lspss WLModAXVAAXNANAX
73 19 60 71 72 syl3anc WLVecAVYVXNAYNArBaseScalarWX+WrWYNANANAX
74 73 39 sseldd WLVecAVYVXNAYNArBaseScalarWX+WrWYNAX+WrWYNAX
75 69 74 eqeltrd WLVecAVYVXNAYNArBaseScalarWX+WrWYNArWY+WXNAX
76 1 3 lspssid WLModAXVAXNAX
77 19 60 76 syl2anc WLVecAVYVXNAYNArBaseScalarWX+WrWYNAAXNAX
78 snidg XVXX
79 elun2 XXXAX
80 33 78 79 3syl WLVecAVYVXNAYNArBaseScalarWX+WrWYNAXAX
81 77 80 sseldd WLVecAVYVXNAYNArBaseScalarWX+WrWYNAXNAX
82 65 2 lssvsubcl WLModNAXSrWY+WXNAXXNAXrWY+WX-WXNAX
83 19 62 75 81 82 syl22anc WLVecAVYVXNAYNArBaseScalarWX+WrWYNArWY+WX-WXNAX
84 67 83 eqeltrrd WLVecAVYVXNAYNArBaseScalarWX+WrWYNArWYNAX
85 4 7 5 2 lssvscl WLModNAXSinvrScalarWrBaseScalarWrWYNAXinvrScalarWrWrWYNAX
86 19 62 53 84 85 syl22anc WLVecAVYVXNAYNArBaseScalarWX+WrWYNAinvrScalarWrWrWYNAX
87 58 86 eqeltrrd WLVecAVYVXNAYNArBaseScalarWX+WrWYNAYNAX
88 15 87 rexlimddv WLVecAVYVXNAYNAYNAX