Metamath Proof Explorer


Theorem madjusmdetlem2

Description: Lemma for madjusmdet . (Contributed by Thierry Arnoux, 26-Aug-2020)

Ref Expression
Hypotheses madjusmdet.b B=BaseA
madjusmdet.a A=1NMatR
madjusmdet.d D=1NmaDetR
madjusmdet.k K=1NmaAdjuR
madjusmdet.t ·˙=R
madjusmdet.z Z=ℤRHomR
madjusmdet.e E=1N1maDetR
madjusmdet.n φN
madjusmdet.r φRCRing
madjusmdet.i φI1N
madjusmdet.j φJ1N
madjusmdet.m φMB
madjusmdetlem2.p P=i1Nifi=1IifiIi1i
madjusmdetlem2.s S=i1Nifi=1NifiNi1i
Assertion madjusmdetlem2 φX1N1ifX<IXX+1=PS-1X

Proof

Step Hyp Ref Expression
1 madjusmdet.b B=BaseA
2 madjusmdet.a A=1NMatR
3 madjusmdet.d D=1NmaDetR
4 madjusmdet.k K=1NmaAdjuR
5 madjusmdet.t ·˙=R
6 madjusmdet.z Z=ℤRHomR
7 madjusmdet.e E=1N1maDetR
8 madjusmdet.n φN
9 madjusmdet.r φRCRing
10 madjusmdet.i φI1N
11 madjusmdet.j φJ1N
12 madjusmdet.m φMB
13 madjusmdetlem2.p P=i1Nifi=1IifiIi1i
14 madjusmdetlem2.s S=i1Nifi=1NifiNi1i
15 nnuz =1
16 8 15 eleqtrdi φN1
17 eluzfz2 N1N1N
18 16 17 syl φN1N
19 eqid 1N=1N
20 eqid SymGrp1N=SymGrp1N
21 eqid BaseSymGrp1N=BaseSymGrp1N
22 19 14 20 21 fzto1st N1NSBaseSymGrp1N
23 18 22 syl φSBaseSymGrp1N
24 20 21 symgbasf1o SBaseSymGrp1NS:1N1-1 onto1N
25 23 24 syl φS:1N1-1 onto1N
26 25 adantr φX1N1S:1N1-1 onto1N
27 fznatpl1 NX1N1X+11N
28 8 27 sylan φX1N1X+11N
29 eqeq1 i=xi=1x=1
30 breq1 i=xiNxN
31 oveq1 i=xi1=x1
32 id i=xi=x
33 30 31 32 ifbieq12d i=xifiNi1i=ifxNx1x
34 29 33 ifbieq2d i=xifi=1NifiNi1i=ifx=1NifxNx1x
35 34 cbvmptv i1Nifi=1NifiNi1i=x1Nifx=1NifxNx1x
36 14 35 eqtri S=x1Nifx=1NifxNx1x
37 36 a1i φX1N1S=x1Nifx=1NifxNx1x
38 simpr φX1N1x=X+1x=X+1
39 1red φX1N1x=X+11
40 fz1ssnn 1N1
41 simpr φX1N1X1N1
42 40 41 sselid φX1N1X
43 42 nnrpd φX1N1X+
44 43 adantr φX1N1x=X+1X+
45 39 44 ltaddrp2d φX1N1x=X+11<X+1
46 39 45 ltned φX1N1x=X+11X+1
47 46 necomd φX1N1x=X+1X+11
48 38 47 eqnetrd φX1N1x=X+1x1
49 48 neneqd φX1N1x=X+1¬x=1
50 49 iffalsed φX1N1x=X+1ifx=1NifxNx1x=ifxNx1x
51 8 adantr φX1N1N
52 42 nnnn0d φX1N1X0
53 51 nnnn0d φX1N1N0
54 elfzle2 X1N1XN1
55 41 54 syl φX1N1XN1
56 nn0ltlem1 X0N0X<NXN1
57 56 biimpar X0N0XN1X<N
58 52 53 55 57 syl21anc φX1N1X<N
59 nnltp1le XNX<NX+1N
60 59 biimpa XNX<NX+1N
61 42 51 58 60 syl21anc φX1N1X+1N
62 61 adantr φX1N1x=X+1X+1N
63 38 62 eqbrtrd φX1N1x=X+1xN
64 63 iftrued φX1N1x=X+1ifxNx1x=x1
65 38 oveq1d φX1N1x=X+1x1=X+1-1
66 42 nncnd φX1N1X
67 1cnd φX1N11
68 66 67 pncand φX1N1X+1-1=X
69 68 adantr φX1N1x=X+1X+1-1=X
70 65 69 eqtrd φX1N1x=X+1x1=X
71 50 64 70 3eqtrd φX1N1x=X+1ifx=1NifxNx1x=X
72 37 71 28 41 fvmptd φX1N1SX+1=X
73 72 idi φX1N1SX+1=X
74 f1ocnvfv S:1N1-1 onto1NX+11NSX+1=XS-1X=X+1
75 74 imp S:1N1-1 onto1NX+11NSX+1=XS-1X=X+1
76 26 28 73 75 syl21anc φX1N1S-1X=X+1
77 76 fveq2d φX1N1PS-1X=PX+1
78 77 adantr φX1N1X<IPS-1X=PX+1
79 32 breq1d i=xiIxI
80 79 31 32 ifbieq12d i=xifiIi1i=ifxIx1x
81 29 80 ifbieq2d i=xifi=1IifiIi1i=ifx=1IifxIx1x
82 81 cbvmptv i1Nifi=1IifiIi1i=x1Nifx=1IifxIx1x
83 13 82 eqtri P=x1Nifx=1IifxIx1x
84 83 a1i φX1N1X<IP=x1Nifx=1IifxIx1x
85 45 38 breqtrrd φX1N1x=X+11<x
86 39 85 ltned φX1N1x=X+11x
87 86 necomd φX1N1x=X+1x1
88 87 neneqd φX1N1x=X+1¬x=1
89 88 iffalsed φX1N1x=X+1ifx=1IifxIx1x=ifxIx1x
90 89 adantlr φX1N1X<Ix=X+1ifx=1IifxIx1x=ifxIx1x
91 simpr φX1N1X<Ix=X+1x=X+1
92 42 ad2antrr φX1N1X<Ix=X+1X
93 fz1ssnn 1N
94 93 10 sselid φI
95 94 ad3antrrr φX1N1X<Ix=X+1I
96 simplr φX1N1X<Ix=X+1X<I
97 nnltp1le XIX<IX+1I
98 97 biimpa XIX<IX+1I
99 92 95 96 98 syl21anc φX1N1X<Ix=X+1X+1I
100 91 99 eqbrtrd φX1N1X<Ix=X+1xI
101 100 iftrued φX1N1X<Ix=X+1ifxIx1x=x1
102 70 adantlr φX1N1X<Ix=X+1x1=X
103 90 101 102 3eqtrd φX1N1X<Ix=X+1ifx=1IifxIx1x=X
104 28 adantr φX1N1X<IX+11N
105 simplr φX1N1X<IX1N1
106 84 103 104 105 fvmptd φX1N1X<IPX+1=X
107 78 106 eqtr2d φX1N1X<IX=PS-1X
108 77 adantr φX1N1¬X<IPS-1X=PX+1
109 83 a1i φX1N1¬X<IP=x1Nifx=1IifxIx1x
110 89 adantlr φX1N1¬X<Ix=X+1ifx=1IifxIx1x=ifxIx1x
111 42 ad2antrr φX1N1x=X+1xIX
112 94 ad3antrrr φX1N1x=X+1xII
113 38 adantr φX1N1x=X+1xIx=X+1
114 simpr φX1N1x=X+1xIxI
115 113 114 eqbrtrrd φX1N1x=X+1xIX+1I
116 97 biimpar XIX+1IX<I
117 111 112 115 116 syl21anc φX1N1x=X+1xIX<I
118 117 ex φX1N1x=X+1xIX<I
119 118 con3d φX1N1x=X+1¬X<I¬xI
120 119 imp φX1N1x=X+1¬X<I¬xI
121 120 an32s φX1N1¬X<Ix=X+1¬xI
122 121 iffalsed φX1N1¬X<Ix=X+1ifxIx1x=x
123 simpr φX1N1¬X<Ix=X+1x=X+1
124 122 123 eqtrd φX1N1¬X<Ix=X+1ifxIx1x=X+1
125 110 124 eqtrd φX1N1¬X<Ix=X+1ifx=1IifxIx1x=X+1
126 28 adantr φX1N1¬X<IX+11N
127 109 125 126 126 fvmptd φX1N1¬X<IPX+1=X+1
128 108 127 eqtr2d φX1N1¬X<IX+1=PS-1X
129 107 128 ifeqda φX1N1ifX<IXX+1=PS-1X
130 f1ocnv S:1N1-1 onto1NS-1:1N1-1 onto1N
131 23 24 130 3syl φS-1:1N1-1 onto1N
132 f1ofun S-1:1N1-1 onto1NFunS-1
133 131 132 syl φFunS-1
134 133 adantr φX1N1FunS-1
135 fzdif2 N11NN=1N1
136 16 135 syl φ1NN=1N1
137 difss 1NN1N
138 136 137 eqsstrrdi φ1N11N
139 f1odm S-1:1N1-1 onto1NdomS-1=1N
140 131 139 syl φdomS-1=1N
141 138 140 sseqtrrd φ1N1domS-1
142 141 adantr φX1N11N1domS-1
143 142 41 sseldd φX1N1XdomS-1
144 fvco FunS-1XdomS-1PS-1X=PS-1X
145 134 143 144 syl2anc φX1N1PS-1X=PS-1X
146 129 145 eqtr4d φX1N1ifX<IXX+1=PS-1X