Metamath Proof Explorer


Theorem madjusmdetlem2

Description: Lemma for madjusmdet . (Contributed by Thierry Arnoux, 26-Aug-2020)

Ref Expression
Hypotheses madjusmdet.b B = Base A
madjusmdet.a A = 1 N Mat R
madjusmdet.d D = 1 N maDet R
madjusmdet.k K = 1 N maAdju R
madjusmdet.t · ˙ = R
madjusmdet.z Z = ℤRHom R
madjusmdet.e E = 1 N 1 maDet R
madjusmdet.n φ N
madjusmdet.r φ R CRing
madjusmdet.i φ I 1 N
madjusmdet.j φ J 1 N
madjusmdet.m φ M B
madjusmdetlem2.p P = i 1 N if i = 1 I if i I i 1 i
madjusmdetlem2.s S = i 1 N if i = 1 N if i N i 1 i
Assertion madjusmdetlem2 φ X 1 N 1 if X < I X X + 1 = P S -1 X

Proof

Step Hyp Ref Expression
1 madjusmdet.b B = Base A
2 madjusmdet.a A = 1 N Mat R
3 madjusmdet.d D = 1 N maDet R
4 madjusmdet.k K = 1 N maAdju R
5 madjusmdet.t · ˙ = R
6 madjusmdet.z Z = ℤRHom R
7 madjusmdet.e E = 1 N 1 maDet R
8 madjusmdet.n φ N
9 madjusmdet.r φ R CRing
10 madjusmdet.i φ I 1 N
11 madjusmdet.j φ J 1 N
12 madjusmdet.m φ M B
13 madjusmdetlem2.p P = i 1 N if i = 1 I if i I i 1 i
14 madjusmdetlem2.s S = i 1 N if i = 1 N if i N i 1 i
15 nnuz = 1
16 8 15 eleqtrdi φ N 1
17 eluzfz2 N 1 N 1 N
18 16 17 syl φ N 1 N
19 eqid 1 N = 1 N
20 eqid SymGrp 1 N = SymGrp 1 N
21 eqid Base SymGrp 1 N = Base SymGrp 1 N
22 19 14 20 21 fzto1st N 1 N S Base SymGrp 1 N
23 18 22 syl φ S Base SymGrp 1 N
24 20 21 symgbasf1o S Base SymGrp 1 N S : 1 N 1-1 onto 1 N
25 23 24 syl φ S : 1 N 1-1 onto 1 N
26 25 adantr φ X 1 N 1 S : 1 N 1-1 onto 1 N
27 fznatpl1 N X 1 N 1 X + 1 1 N
28 8 27 sylan φ X 1 N 1 X + 1 1 N
29 eqeq1 i = x i = 1 x = 1
30 breq1 i = x i N x N
31 oveq1 i = x i 1 = x 1
32 id i = x i = x
33 30 31 32 ifbieq12d i = x if i N i 1 i = if x N x 1 x
34 29 33 ifbieq2d i = x if i = 1 N if i N i 1 i = if x = 1 N if x N x 1 x
35 34 cbvmptv i 1 N if i = 1 N if i N i 1 i = x 1 N if x = 1 N if x N x 1 x
36 14 35 eqtri S = x 1 N if x = 1 N if x N x 1 x
37 simpr φ X 1 N 1 x = X + 1 x = X + 1
38 1red φ X 1 N 1 x = X + 1 1
39 fz1ssnn 1 N 1
40 simpr φ X 1 N 1 X 1 N 1
41 39 40 sselid φ X 1 N 1 X
42 41 nnrpd φ X 1 N 1 X +
43 42 adantr φ X 1 N 1 x = X + 1 X +
44 38 43 ltaddrp2d φ X 1 N 1 x = X + 1 1 < X + 1
45 38 44 gtned φ X 1 N 1 x = X + 1 X + 1 1
46 37 45 eqnetrd φ X 1 N 1 x = X + 1 x 1
47 46 neneqd φ X 1 N 1 x = X + 1 ¬ x = 1
48 47 iffalsed φ X 1 N 1 x = X + 1 if x = 1 N if x N x 1 x = if x N x 1 x
49 8 adantr φ X 1 N 1 N
50 41 nnnn0d φ X 1 N 1 X 0
51 49 nnnn0d φ X 1 N 1 N 0
52 elfzle2 X 1 N 1 X N 1
53 40 52 syl φ X 1 N 1 X N 1
54 nn0ltlem1 X 0 N 0 X < N X N 1
55 54 biimpar X 0 N 0 X N 1 X < N
56 50 51 53 55 syl21anc φ X 1 N 1 X < N
57 nnltp1le X N X < N X + 1 N
58 57 biimpa X N X < N X + 1 N
59 41 49 56 58 syl21anc φ X 1 N 1 X + 1 N
60 59 adantr φ X 1 N 1 x = X + 1 X + 1 N
61 37 60 eqbrtrd φ X 1 N 1 x = X + 1 x N
62 61 iftrued φ X 1 N 1 x = X + 1 if x N x 1 x = x 1
63 37 oveq1d φ X 1 N 1 x = X + 1 x 1 = X + 1 - 1
64 41 nncnd φ X 1 N 1 X
65 1cnd φ X 1 N 1 1
66 64 65 pncand φ X 1 N 1 X + 1 - 1 = X
67 66 adantr φ X 1 N 1 x = X + 1 X + 1 - 1 = X
68 63 67 eqtrd φ X 1 N 1 x = X + 1 x 1 = X
69 48 62 68 3eqtrd φ X 1 N 1 x = X + 1 if x = 1 N if x N x 1 x = X
70 36 69 28 40 fvmptd2 φ X 1 N 1 S X + 1 = X
71 f1ocnvfv S : 1 N 1-1 onto 1 N X + 1 1 N S X + 1 = X S -1 X = X + 1
72 71 imp S : 1 N 1-1 onto 1 N X + 1 1 N S X + 1 = X S -1 X = X + 1
73 26 28 70 72 syl21anc φ X 1 N 1 S -1 X = X + 1
74 73 fveq2d φ X 1 N 1 P S -1 X = P X + 1
75 74 adantr φ X 1 N 1 X < I P S -1 X = P X + 1
76 breq1 i = x i I x I
77 76 31 32 ifbieq12d i = x if i I i 1 i = if x I x 1 x
78 29 77 ifbieq2d i = x if i = 1 I if i I i 1 i = if x = 1 I if x I x 1 x
79 78 cbvmptv i 1 N if i = 1 I if i I i 1 i = x 1 N if x = 1 I if x I x 1 x
80 13 79 eqtri P = x 1 N if x = 1 I if x I x 1 x
81 44 37 breqtrrd φ X 1 N 1 x = X + 1 1 < x
82 38 81 gtned φ X 1 N 1 x = X + 1 x 1
83 82 neneqd φ X 1 N 1 x = X + 1 ¬ x = 1
84 83 iffalsed φ X 1 N 1 x = X + 1 if x = 1 I if x I x 1 x = if x I x 1 x
85 84 adantlr φ X 1 N 1 X < I x = X + 1 if x = 1 I if x I x 1 x = if x I x 1 x
86 simpr φ X 1 N 1 X < I x = X + 1 x = X + 1
87 41 ad2antrr φ X 1 N 1 X < I x = X + 1 X
88 fz1ssnn 1 N
89 88 10 sselid φ I
90 89 ad3antrrr φ X 1 N 1 X < I x = X + 1 I
91 simplr φ X 1 N 1 X < I x = X + 1 X < I
92 nnltp1le X I X < I X + 1 I
93 92 biimpa X I X < I X + 1 I
94 87 90 91 93 syl21anc φ X 1 N 1 X < I x = X + 1 X + 1 I
95 86 94 eqbrtrd φ X 1 N 1 X < I x = X + 1 x I
96 95 iftrued φ X 1 N 1 X < I x = X + 1 if x I x 1 x = x 1
97 68 adantlr φ X 1 N 1 X < I x = X + 1 x 1 = X
98 85 96 97 3eqtrd φ X 1 N 1 X < I x = X + 1 if x = 1 I if x I x 1 x = X
99 28 adantr φ X 1 N 1 X < I X + 1 1 N
100 simplr φ X 1 N 1 X < I X 1 N 1
101 80 98 99 100 fvmptd2 φ X 1 N 1 X < I P X + 1 = X
102 75 101 eqtr2d φ X 1 N 1 X < I X = P S -1 X
103 74 adantr φ X 1 N 1 ¬ X < I P S -1 X = P X + 1
104 84 adantlr φ X 1 N 1 ¬ X < I x = X + 1 if x = 1 I if x I x 1 x = if x I x 1 x
105 41 ad2antrr φ X 1 N 1 x = X + 1 x I X
106 89 ad3antrrr φ X 1 N 1 x = X + 1 x I I
107 simplr φ X 1 N 1 x = X + 1 x I x = X + 1
108 simpr φ X 1 N 1 x = X + 1 x I x I
109 107 108 eqbrtrrd φ X 1 N 1 x = X + 1 x I X + 1 I
110 92 biimpar X I X + 1 I X < I
111 105 106 109 110 syl21anc φ X 1 N 1 x = X + 1 x I X < I
112 111 stoic1a φ X 1 N 1 x = X + 1 ¬ X < I ¬ x I
113 112 an32s φ X 1 N 1 ¬ X < I x = X + 1 ¬ x I
114 113 iffalsed φ X 1 N 1 ¬ X < I x = X + 1 if x I x 1 x = x
115 simpr φ X 1 N 1 ¬ X < I x = X + 1 x = X + 1
116 104 114 115 3eqtrd φ X 1 N 1 ¬ X < I x = X + 1 if x = 1 I if x I x 1 x = X + 1
117 28 adantr φ X 1 N 1 ¬ X < I X + 1 1 N
118 80 116 117 117 fvmptd2 φ X 1 N 1 ¬ X < I P X + 1 = X + 1
119 103 118 eqtr2d φ X 1 N 1 ¬ X < I X + 1 = P S -1 X
120 102 119 ifeqda φ X 1 N 1 if X < I X X + 1 = P S -1 X
121 f1ocnv S : 1 N 1-1 onto 1 N S -1 : 1 N 1-1 onto 1 N
122 23 24 121 3syl φ S -1 : 1 N 1-1 onto 1 N
123 f1ofun S -1 : 1 N 1-1 onto 1 N Fun S -1
124 122 123 syl φ Fun S -1
125 fzdif2 N 1 1 N N = 1 N 1
126 16 125 syl φ 1 N N = 1 N 1
127 difss 1 N N 1 N
128 126 127 eqsstrrdi φ 1 N 1 1 N
129 f1odm S -1 : 1 N 1-1 onto 1 N dom S -1 = 1 N
130 122 129 syl φ dom S -1 = 1 N
131 128 130 sseqtrrd φ 1 N 1 dom S -1
132 131 sselda φ X 1 N 1 X dom S -1
133 fvco Fun S -1 X dom S -1 P S -1 X = P S -1 X
134 124 132 133 syl2an2r φ X 1 N 1 P S -1 X = P S -1 X
135 120 134 eqtr4d φ X 1 N 1 if X < I X X + 1 = P S -1 X