| Step |
Hyp |
Ref |
Expression |
| 1 |
|
madjusmdet.b |
|
| 2 |
|
madjusmdet.a |
|
| 3 |
|
madjusmdet.d |
|
| 4 |
|
madjusmdet.k |
|
| 5 |
|
madjusmdet.t |
|
| 6 |
|
madjusmdet.z |
|
| 7 |
|
madjusmdet.e |
|
| 8 |
|
madjusmdet.n |
|
| 9 |
|
madjusmdet.r |
|
| 10 |
|
madjusmdet.i |
|
| 11 |
|
madjusmdet.j |
|
| 12 |
|
madjusmdet.m |
|
| 13 |
|
madjusmdetlem2.p |
|
| 14 |
|
madjusmdetlem2.s |
|
| 15 |
|
nnuz |
|
| 16 |
8 15
|
eleqtrdi |
|
| 17 |
|
eluzfz2 |
|
| 18 |
16 17
|
syl |
|
| 19 |
|
eqid |
|
| 20 |
|
eqid |
|
| 21 |
|
eqid |
|
| 22 |
19 14 20 21
|
fzto1st |
|
| 23 |
18 22
|
syl |
|
| 24 |
20 21
|
symgbasf1o |
|
| 25 |
23 24
|
syl |
|
| 26 |
25
|
adantr |
|
| 27 |
|
fznatpl1 |
|
| 28 |
8 27
|
sylan |
|
| 29 |
|
eqeq1 |
|
| 30 |
|
breq1 |
|
| 31 |
|
oveq1 |
|
| 32 |
|
id |
|
| 33 |
30 31 32
|
ifbieq12d |
|
| 34 |
29 33
|
ifbieq2d |
|
| 35 |
34
|
cbvmptv |
|
| 36 |
14 35
|
eqtri |
|
| 37 |
|
simpr |
|
| 38 |
|
1red |
|
| 39 |
|
fz1ssnn |
|
| 40 |
|
simpr |
|
| 41 |
39 40
|
sselid |
|
| 42 |
41
|
nnrpd |
|
| 43 |
42
|
adantr |
|
| 44 |
38 43
|
ltaddrp2d |
|
| 45 |
38 44
|
gtned |
|
| 46 |
37 45
|
eqnetrd |
|
| 47 |
46
|
neneqd |
|
| 48 |
47
|
iffalsed |
|
| 49 |
8
|
adantr |
|
| 50 |
41
|
nnnn0d |
|
| 51 |
49
|
nnnn0d |
|
| 52 |
|
elfzle2 |
|
| 53 |
40 52
|
syl |
|
| 54 |
|
nn0ltlem1 |
|
| 55 |
54
|
biimpar |
|
| 56 |
50 51 53 55
|
syl21anc |
|
| 57 |
|
nnltp1le |
|
| 58 |
57
|
biimpa |
|
| 59 |
41 49 56 58
|
syl21anc |
|
| 60 |
59
|
adantr |
|
| 61 |
37 60
|
eqbrtrd |
|
| 62 |
61
|
iftrued |
|
| 63 |
37
|
oveq1d |
|
| 64 |
41
|
nncnd |
|
| 65 |
|
1cnd |
|
| 66 |
64 65
|
pncand |
|
| 67 |
66
|
adantr |
|
| 68 |
63 67
|
eqtrd |
|
| 69 |
48 62 68
|
3eqtrd |
|
| 70 |
36 69 28 40
|
fvmptd2 |
|
| 71 |
|
f1ocnvfv |
|
| 72 |
71
|
imp |
|
| 73 |
26 28 70 72
|
syl21anc |
|
| 74 |
73
|
fveq2d |
|
| 75 |
74
|
adantr |
|
| 76 |
|
breq1 |
|
| 77 |
76 31 32
|
ifbieq12d |
|
| 78 |
29 77
|
ifbieq2d |
|
| 79 |
78
|
cbvmptv |
|
| 80 |
13 79
|
eqtri |
|
| 81 |
44 37
|
breqtrrd |
|
| 82 |
38 81
|
gtned |
|
| 83 |
82
|
neneqd |
|
| 84 |
83
|
iffalsed |
|
| 85 |
84
|
adantlr |
|
| 86 |
|
simpr |
|
| 87 |
41
|
ad2antrr |
|
| 88 |
|
fz1ssnn |
|
| 89 |
88 10
|
sselid |
|
| 90 |
89
|
ad3antrrr |
|
| 91 |
|
simplr |
|
| 92 |
|
nnltp1le |
|
| 93 |
92
|
biimpa |
|
| 94 |
87 90 91 93
|
syl21anc |
|
| 95 |
86 94
|
eqbrtrd |
|
| 96 |
95
|
iftrued |
|
| 97 |
68
|
adantlr |
|
| 98 |
85 96 97
|
3eqtrd |
|
| 99 |
28
|
adantr |
|
| 100 |
|
simplr |
|
| 101 |
80 98 99 100
|
fvmptd2 |
|
| 102 |
75 101
|
eqtr2d |
|
| 103 |
74
|
adantr |
|
| 104 |
84
|
adantlr |
|
| 105 |
41
|
ad2antrr |
|
| 106 |
89
|
ad3antrrr |
|
| 107 |
|
simplr |
|
| 108 |
|
simpr |
|
| 109 |
107 108
|
eqbrtrrd |
|
| 110 |
92
|
biimpar |
|
| 111 |
105 106 109 110
|
syl21anc |
|
| 112 |
111
|
stoic1a |
|
| 113 |
112
|
an32s |
|
| 114 |
113
|
iffalsed |
|
| 115 |
|
simpr |
|
| 116 |
104 114 115
|
3eqtrd |
|
| 117 |
28
|
adantr |
|
| 118 |
80 116 117 117
|
fvmptd2 |
|
| 119 |
103 118
|
eqtr2d |
|
| 120 |
102 119
|
ifeqda |
|
| 121 |
|
f1ocnv |
|
| 122 |
23 24 121
|
3syl |
|
| 123 |
|
f1ofun |
|
| 124 |
122 123
|
syl |
|
| 125 |
|
fzdif2 |
|
| 126 |
16 125
|
syl |
|
| 127 |
|
difss |
|
| 128 |
126 127
|
eqsstrrdi |
|
| 129 |
|
f1odm |
|
| 130 |
122 129
|
syl |
|
| 131 |
128 130
|
sseqtrrd |
|
| 132 |
131
|
sselda |
|
| 133 |
|
fvco |
|
| 134 |
124 132 133
|
syl2an2r |
|
| 135 |
120 134
|
eqtr4d |
|