Metamath Proof Explorer


Theorem mccllem

Description: * Induction step for mccl . (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses mccllem.a φAFin
mccllem.c φCA
mccllem.d φDAC
mccllem.b φB0CD
mccllem.6 φb0CkCbk!kCbk!
Assertion mccllem φkCDBk!kCDBk!

Proof

Step Hyp Ref Expression
1 mccllem.a φAFin
2 mccllem.c φCA
3 mccllem.d φDAC
4 mccllem.b φB0CD
5 mccllem.6 φb0CkCbk!kCbk!
6 nfv kφ
7 nfcv _kBD!
8 ssfi AFinCACFin
9 1 2 8 syl2anc φCFin
10 eldifn DAC¬DC
11 3 10 syl φ¬DC
12 elmapi B0CDB:CD0
13 4 12 syl φB:CD0
14 13 adantr φkCB:CD0
15 elun1 kCkCD
16 15 adantl φkCkCD
17 14 16 ffvelcdmd φkCBk0
18 17 faccld φkCBk!
19 18 nncnd φkCBk!
20 2fveq3 k=DBk!=BD!
21 snidg DACDD
22 3 21 syl φDD
23 elun2 DDDCD
24 22 23 syl φDCD
25 13 24 ffvelcdmd φBD0
26 25 faccld φBD!
27 26 nncnd φBD!
28 6 7 9 3 11 19 20 27 fprodsplitsn φkCDBk!=kCBk!BD!
29 28 oveq2d φkCDBk!kCDBk!=kCDBk!kCBk!BD!
30 3 eldifad φDA
31 snssi DADA
32 30 31 syl φDA
33 2 32 unssd φCDA
34 ssfi AFinCDACDFin
35 1 33 34 syl2anc φCDFin
36 13 ffvelcdmda φkCDBk0
37 35 36 fsumnn0cl φkCDBk0
38 37 faccld φkCDBk!
39 38 nncnd φkCDBk!
40 6 9 19 fprodclf φkCBk!
41 40 27 mulcld φkCBk!BD!
42 18 nnne0d φkCBk!0
43 9 19 42 fprodn0 φkCBk!0
44 26 nnne0d φBD!0
45 40 27 43 44 mulne0d φkCBk!BD!0
46 39 41 45 divcld φkCDBk!kCBk!BD!
47 46 mullidd φ1kCDBk!kCBk!BD!=kCDBk!kCBk!BD!
48 47 eqcomd φkCDBk!kCBk!BD!=1kCDBk!kCBk!BD!
49 9 17 fsumnn0cl φkCBk0
50 49 faccld φkCBk!
51 50 nncnd φkCBk!
52 nnne0 kCBk!kCBk!0
53 50 52 syl φkCBk!0
54 51 53 dividd φkCBk!kCBk!=1
55 54 eqcomd φ1=kCBk!kCBk!
56 40 27 mulcomd φkCBk!BD!=BD!kCBk!
57 56 oveq2d φkCDBk!kCBk!BD!=kCDBk!BD!kCBk!
58 39 27 40 44 43 divdiv1d φkCDBk!BD!kCBk!=kCDBk!BD!kCBk!
59 58 eqcomd φkCDBk!BD!kCBk!=kCDBk!BD!kCBk!
60 57 59 eqtrd φkCDBk!kCBk!BD!=kCDBk!BD!kCBk!
61 55 60 oveq12d φ1kCDBk!kCBk!BD!=kCBk!kCBk!kCDBk!BD!kCBk!
62 39 27 44 divcld φkCDBk!BD!
63 51 51 62 40 53 43 divmul13d φkCBk!kCBk!kCDBk!BD!kCBk!=kCDBk!BD!kCBk!kCBk!kCBk!
64 61 63 eqtrd φ1kCDBk!kCBk!BD!=kCDBk!BD!kCBk!kCBk!kCBk!
65 29 48 64 3eqtrd φkCDBk!kCDBk!=kCDBk!BD!kCBk!kCBk!kCBk!
66 39 27 51 44 53 divdiv1d φkCDBk!BD!kCBk!=kCDBk!BD!kCBk!
67 nfcsb1v _kD/kBk
68 17 nn0cnd φkCBk
69 csbeq1a k=DBk=D/kBk
70 csbfv D/kBk=BD
71 70 a1i φD/kBk=BD
72 25 nn0cnd φBD
73 71 72 eqeltrd φD/kBk
74 6 67 9 30 11 68 69 73 fsumsplitsn φkCDBk=kCBk+D/kBk
75 74 oveq1d φkCDBkkCBk=kCBk+D/kBk-kCBk
76 49 nn0cnd φkCBk
77 76 73 pncan2d φkCBk+D/kBk-kCBk=D/kBk
78 75 77 71 3eqtrrd φBD=kCDBkkCBk
79 78 fveq2d φBD!=kCDBkkCBk!
80 79 oveq1d φBD!kCBk!=kCDBkkCBk!kCBk!
81 80 oveq2d φkCDBk!BD!kCBk!=kCDBk!kCDBkkCBk!kCBk!
82 0zd φ0
83 37 nn0zd φkCDBk
84 49 nn0zd φkCBk
85 49 nn0ge0d φ0kCBk
86 25 nn0ge0d φ0BD
87 71 eqcomd φBD=D/kBk
88 86 87 breqtrd φ0D/kBk
89 49 nn0red φkCBk
90 25 nn0red φBD
91 71 90 eqeltrd φD/kBk
92 89 91 addge01d φ0D/kBkkCBkkCBk+D/kBk
93 88 92 mpbid φkCBkkCBk+D/kBk
94 74 eqcomd φkCBk+D/kBk=kCDBk
95 93 94 breqtrd φkCBkkCDBk
96 82 83 84 85 95 elfzd φkCBk0kCDBk
97 bcval2 kCBk0kCDBk(kCDBkkCBk)=kCDBk!kCDBkkCBk!kCBk!
98 96 97 syl φ(kCDBkkCBk)=kCDBk!kCDBkkCBk!kCBk!
99 98 eqcomd φkCDBk!kCDBkkCBk!kCBk!=(kCDBkkCBk)
100 66 81 99 3eqtrd φkCDBk!BD!kCBk!=(kCDBkkCBk)
101 bccl2 kCBk0kCDBk(kCDBkkCBk)
102 96 101 syl φ(kCDBkkCBk)
103 100 102 eqeltrd φkCDBk!BD!kCBk!
104 ssun1 CCD
105 104 a1i φCCD
106 elmapssres B0CDCCDBC0C
107 4 105 106 syl2anc φBC0C
108 fveq1 b=BCbk=BCk
109 108 adantr b=BCkCbk=BCk
110 fvres kCBCk=Bk
111 110 adantl b=BCkCBCk=Bk
112 109 111 eqtrd b=BCkCbk=Bk
113 112 sumeq2dv b=BCkCbk=kCBk
114 113 fveq2d b=BCkCbk!=kCBk!
115 112 fveq2d b=BCkCbk!=Bk!
116 115 prodeq2dv b=BCkCbk!=kCBk!
117 114 116 oveq12d b=BCkCbk!kCbk!=kCBk!kCBk!
118 117 eleq1d b=BCkCbk!kCbk!kCBk!kCBk!
119 118 rspccva b0CkCbk!kCbk!BC0CkCBk!kCBk!
120 5 107 119 syl2anc φkCBk!kCBk!
121 103 120 nnmulcld φkCDBk!BD!kCBk!kCBk!kCBk!
122 65 121 eqeltrd φkCDBk!kCDBk!