Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Finite multiplication of numbers and finite multiplication of functions
mccllem
Next ⟩
mccl
Metamath Proof Explorer
Ascii
Unicode
Theorem
mccllem
Description:
* Induction step for
mccl
.
(Contributed by
Glauco Siliprandi
, 5-Apr-2020)
Ref
Expression
Hypotheses
mccllem.a
⊢
φ
→
A
∈
Fin
mccllem.c
⊢
φ
→
C
⊆
A
mccllem.d
⊢
φ
→
D
∈
A
∖
C
mccllem.b
⊢
φ
→
B
∈
ℕ
0
C
∪
D
mccllem.6
⊢
φ
→
∀
b
∈
ℕ
0
C
∑
k
∈
C
b
k
!
∏
k
∈
C
b
k
!
∈
ℕ
Assertion
mccllem
⊢
φ
→
∑
k
∈
C
∪
D
B
k
!
∏
k
∈
C
∪
D
B
k
!
∈
ℕ
Proof
Step
Hyp
Ref
Expression
1
mccllem.a
⊢
φ
→
A
∈
Fin
2
mccllem.c
⊢
φ
→
C
⊆
A
3
mccllem.d
⊢
φ
→
D
∈
A
∖
C
4
mccllem.b
⊢
φ
→
B
∈
ℕ
0
C
∪
D
5
mccllem.6
⊢
φ
→
∀
b
∈
ℕ
0
C
∑
k
∈
C
b
k
!
∏
k
∈
C
b
k
!
∈
ℕ
6
nfv
⊢
Ⅎ
k
φ
7
nfcv
⊢
Ⅎ
_
k
B
D
!
8
ssfi
⊢
A
∈
Fin
∧
C
⊆
A
→
C
∈
Fin
9
1
2
8
syl2anc
⊢
φ
→
C
∈
Fin
10
eldifn
⊢
D
∈
A
∖
C
→
¬
D
∈
C
11
3
10
syl
⊢
φ
→
¬
D
∈
C
12
elmapi
⊢
B
∈
ℕ
0
C
∪
D
→
B
:
C
∪
D
⟶
ℕ
0
13
4
12
syl
⊢
φ
→
B
:
C
∪
D
⟶
ℕ
0
14
13
adantr
⊢
φ
∧
k
∈
C
→
B
:
C
∪
D
⟶
ℕ
0
15
elun1
⊢
k
∈
C
→
k
∈
C
∪
D
16
15
adantl
⊢
φ
∧
k
∈
C
→
k
∈
C
∪
D
17
14
16
ffvelcdmd
⊢
φ
∧
k
∈
C
→
B
k
∈
ℕ
0
18
17
faccld
⊢
φ
∧
k
∈
C
→
B
k
!
∈
ℕ
19
18
nncnd
⊢
φ
∧
k
∈
C
→
B
k
!
∈
ℂ
20
2fveq3
⊢
k
=
D
→
B
k
!
=
B
D
!
21
snidg
⊢
D
∈
A
∖
C
→
D
∈
D
22
3
21
syl
⊢
φ
→
D
∈
D
23
elun2
⊢
D
∈
D
→
D
∈
C
∪
D
24
22
23
syl
⊢
φ
→
D
∈
C
∪
D
25
13
24
ffvelcdmd
⊢
φ
→
B
D
∈
ℕ
0
26
25
faccld
⊢
φ
→
B
D
!
∈
ℕ
27
26
nncnd
⊢
φ
→
B
D
!
∈
ℂ
28
6
7
9
3
11
19
20
27
fprodsplitsn
⊢
φ
→
∏
k
∈
C
∪
D
B
k
!
=
∏
k
∈
C
B
k
!
B
D
!
29
28
oveq2d
⊢
φ
→
∑
k
∈
C
∪
D
B
k
!
∏
k
∈
C
∪
D
B
k
!
=
∑
k
∈
C
∪
D
B
k
!
∏
k
∈
C
B
k
!
B
D
!
30
3
eldifad
⊢
φ
→
D
∈
A
31
snssi
⊢
D
∈
A
→
D
⊆
A
32
30
31
syl
⊢
φ
→
D
⊆
A
33
2
32
unssd
⊢
φ
→
C
∪
D
⊆
A
34
ssfi
⊢
A
∈
Fin
∧
C
∪
D
⊆
A
→
C
∪
D
∈
Fin
35
1
33
34
syl2anc
⊢
φ
→
C
∪
D
∈
Fin
36
13
ffvelcdmda
⊢
φ
∧
k
∈
C
∪
D
→
B
k
∈
ℕ
0
37
35
36
fsumnn0cl
⊢
φ
→
∑
k
∈
C
∪
D
B
k
∈
ℕ
0
38
37
faccld
⊢
φ
→
∑
k
∈
C
∪
D
B
k
!
∈
ℕ
39
38
nncnd
⊢
φ
→
∑
k
∈
C
∪
D
B
k
!
∈
ℂ
40
6
9
19
fprodclf
⊢
φ
→
∏
k
∈
C
B
k
!
∈
ℂ
41
40
27
mulcld
⊢
φ
→
∏
k
∈
C
B
k
!
B
D
!
∈
ℂ
42
18
nnne0d
⊢
φ
∧
k
∈
C
→
B
k
!
≠
0
43
9
19
42
fprodn0
⊢
φ
→
∏
k
∈
C
B
k
!
≠
0
44
26
nnne0d
⊢
φ
→
B
D
!
≠
0
45
40
27
43
44
mulne0d
⊢
φ
→
∏
k
∈
C
B
k
!
B
D
!
≠
0
46
39
41
45
divcld
⊢
φ
→
∑
k
∈
C
∪
D
B
k
!
∏
k
∈
C
B
k
!
B
D
!
∈
ℂ
47
46
mullidd
⊢
φ
→
1
∑
k
∈
C
∪
D
B
k
!
∏
k
∈
C
B
k
!
B
D
!
=
∑
k
∈
C
∪
D
B
k
!
∏
k
∈
C
B
k
!
B
D
!
48
47
eqcomd
⊢
φ
→
∑
k
∈
C
∪
D
B
k
!
∏
k
∈
C
B
k
!
B
D
!
=
1
∑
k
∈
C
∪
D
B
k
!
∏
k
∈
C
B
k
!
B
D
!
49
9
17
fsumnn0cl
⊢
φ
→
∑
k
∈
C
B
k
∈
ℕ
0
50
49
faccld
⊢
φ
→
∑
k
∈
C
B
k
!
∈
ℕ
51
50
nncnd
⊢
φ
→
∑
k
∈
C
B
k
!
∈
ℂ
52
nnne0
⊢
∑
k
∈
C
B
k
!
∈
ℕ
→
∑
k
∈
C
B
k
!
≠
0
53
50
52
syl
⊢
φ
→
∑
k
∈
C
B
k
!
≠
0
54
51
53
dividd
⊢
φ
→
∑
k
∈
C
B
k
!
∑
k
∈
C
B
k
!
=
1
55
54
eqcomd
⊢
φ
→
1
=
∑
k
∈
C
B
k
!
∑
k
∈
C
B
k
!
56
40
27
mulcomd
⊢
φ
→
∏
k
∈
C
B
k
!
B
D
!
=
B
D
!
∏
k
∈
C
B
k
!
57
56
oveq2d
⊢
φ
→
∑
k
∈
C
∪
D
B
k
!
∏
k
∈
C
B
k
!
B
D
!
=
∑
k
∈
C
∪
D
B
k
!
B
D
!
∏
k
∈
C
B
k
!
58
39
27
40
44
43
divdiv1d
⊢
φ
→
∑
k
∈
C
∪
D
B
k
!
B
D
!
∏
k
∈
C
B
k
!
=
∑
k
∈
C
∪
D
B
k
!
B
D
!
∏
k
∈
C
B
k
!
59
58
eqcomd
⊢
φ
→
∑
k
∈
C
∪
D
B
k
!
B
D
!
∏
k
∈
C
B
k
!
=
∑
k
∈
C
∪
D
B
k
!
B
D
!
∏
k
∈
C
B
k
!
60
57
59
eqtrd
⊢
φ
→
∑
k
∈
C
∪
D
B
k
!
∏
k
∈
C
B
k
!
B
D
!
=
∑
k
∈
C
∪
D
B
k
!
B
D
!
∏
k
∈
C
B
k
!
61
55
60
oveq12d
⊢
φ
→
1
∑
k
∈
C
∪
D
B
k
!
∏
k
∈
C
B
k
!
B
D
!
=
∑
k
∈
C
B
k
!
∑
k
∈
C
B
k
!
∑
k
∈
C
∪
D
B
k
!
B
D
!
∏
k
∈
C
B
k
!
62
39
27
44
divcld
⊢
φ
→
∑
k
∈
C
∪
D
B
k
!
B
D
!
∈
ℂ
63
51
51
62
40
53
43
divmul13d
⊢
φ
→
∑
k
∈
C
B
k
!
∑
k
∈
C
B
k
!
∑
k
∈
C
∪
D
B
k
!
B
D
!
∏
k
∈
C
B
k
!
=
∑
k
∈
C
∪
D
B
k
!
B
D
!
∑
k
∈
C
B
k
!
∑
k
∈
C
B
k
!
∏
k
∈
C
B
k
!
64
61
63
eqtrd
⊢
φ
→
1
∑
k
∈
C
∪
D
B
k
!
∏
k
∈
C
B
k
!
B
D
!
=
∑
k
∈
C
∪
D
B
k
!
B
D
!
∑
k
∈
C
B
k
!
∑
k
∈
C
B
k
!
∏
k
∈
C
B
k
!
65
29
48
64
3eqtrd
⊢
φ
→
∑
k
∈
C
∪
D
B
k
!
∏
k
∈
C
∪
D
B
k
!
=
∑
k
∈
C
∪
D
B
k
!
B
D
!
∑
k
∈
C
B
k
!
∑
k
∈
C
B
k
!
∏
k
∈
C
B
k
!
66
39
27
51
44
53
divdiv1d
⊢
φ
→
∑
k
∈
C
∪
D
B
k
!
B
D
!
∑
k
∈
C
B
k
!
=
∑
k
∈
C
∪
D
B
k
!
B
D
!
∑
k
∈
C
B
k
!
67
nfcsb1v
⦋
⦌
⊢
Ⅎ
_
k
⦋
D
/
k
⦌
B
k
68
17
nn0cnd
⊢
φ
∧
k
∈
C
→
B
k
∈
ℂ
69
csbeq1a
⦋
⦌
⊢
k
=
D
→
B
k
=
⦋
D
/
k
⦌
B
k
70
csbfv
⦋
⦌
⊢
⦋
D
/
k
⦌
B
k
=
B
D
71
70
a1i
⦋
⦌
⊢
φ
→
⦋
D
/
k
⦌
B
k
=
B
D
72
25
nn0cnd
⊢
φ
→
B
D
∈
ℂ
73
71
72
eqeltrd
⦋
⦌
⊢
φ
→
⦋
D
/
k
⦌
B
k
∈
ℂ
74
6
67
9
30
11
68
69
73
fsumsplitsn
⦋
⦌
⊢
φ
→
∑
k
∈
C
∪
D
B
k
=
∑
k
∈
C
B
k
+
⦋
D
/
k
⦌
B
k
75
74
oveq1d
⦋
⦌
⊢
φ
→
∑
k
∈
C
∪
D
B
k
−
∑
k
∈
C
B
k
=
∑
k
∈
C
B
k
+
⦋
D
/
k
⦌
B
k
-
∑
k
∈
C
B
k
76
49
nn0cnd
⊢
φ
→
∑
k
∈
C
B
k
∈
ℂ
77
76
73
pncan2d
⦋
⦌
⦋
⦌
⊢
φ
→
∑
k
∈
C
B
k
+
⦋
D
/
k
⦌
B
k
-
∑
k
∈
C
B
k
=
⦋
D
/
k
⦌
B
k
78
75
77
71
3eqtrrd
⊢
φ
→
B
D
=
∑
k
∈
C
∪
D
B
k
−
∑
k
∈
C
B
k
79
78
fveq2d
⊢
φ
→
B
D
!
=
∑
k
∈
C
∪
D
B
k
−
∑
k
∈
C
B
k
!
80
79
oveq1d
⊢
φ
→
B
D
!
∑
k
∈
C
B
k
!
=
∑
k
∈
C
∪
D
B
k
−
∑
k
∈
C
B
k
!
∑
k
∈
C
B
k
!
81
80
oveq2d
⊢
φ
→
∑
k
∈
C
∪
D
B
k
!
B
D
!
∑
k
∈
C
B
k
!
=
∑
k
∈
C
∪
D
B
k
!
∑
k
∈
C
∪
D
B
k
−
∑
k
∈
C
B
k
!
∑
k
∈
C
B
k
!
82
0zd
⊢
φ
→
0
∈
ℤ
83
37
nn0zd
⊢
φ
→
∑
k
∈
C
∪
D
B
k
∈
ℤ
84
49
nn0zd
⊢
φ
→
∑
k
∈
C
B
k
∈
ℤ
85
49
nn0ge0d
⊢
φ
→
0
≤
∑
k
∈
C
B
k
86
25
nn0ge0d
⊢
φ
→
0
≤
B
D
87
71
eqcomd
⦋
⦌
⊢
φ
→
B
D
=
⦋
D
/
k
⦌
B
k
88
86
87
breqtrd
⦋
⦌
⊢
φ
→
0
≤
⦋
D
/
k
⦌
B
k
89
49
nn0red
⊢
φ
→
∑
k
∈
C
B
k
∈
ℝ
90
25
nn0red
⊢
φ
→
B
D
∈
ℝ
91
71
90
eqeltrd
⦋
⦌
⊢
φ
→
⦋
D
/
k
⦌
B
k
∈
ℝ
92
89
91
addge01d
⦋
⦌
⦋
⦌
⊢
φ
→
0
≤
⦋
D
/
k
⦌
B
k
↔
∑
k
∈
C
B
k
≤
∑
k
∈
C
B
k
+
⦋
D
/
k
⦌
B
k
93
88
92
mpbid
⦋
⦌
⊢
φ
→
∑
k
∈
C
B
k
≤
∑
k
∈
C
B
k
+
⦋
D
/
k
⦌
B
k
94
74
eqcomd
⦋
⦌
⊢
φ
→
∑
k
∈
C
B
k
+
⦋
D
/
k
⦌
B
k
=
∑
k
∈
C
∪
D
B
k
95
93
94
breqtrd
⊢
φ
→
∑
k
∈
C
B
k
≤
∑
k
∈
C
∪
D
B
k
96
82
83
84
85
95
elfzd
⊢
φ
→
∑
k
∈
C
B
k
∈
0
…
∑
k
∈
C
∪
D
B
k
97
bcval2
⊢
∑
k
∈
C
B
k
∈
0
…
∑
k
∈
C
∪
D
B
k
→
(
∑
k
∈
C
∪
D
B
k
∑
k
∈
C
B
k
)
=
∑
k
∈
C
∪
D
B
k
!
∑
k
∈
C
∪
D
B
k
−
∑
k
∈
C
B
k
!
∑
k
∈
C
B
k
!
98
96
97
syl
⊢
φ
→
(
∑
k
∈
C
∪
D
B
k
∑
k
∈
C
B
k
)
=
∑
k
∈
C
∪
D
B
k
!
∑
k
∈
C
∪
D
B
k
−
∑
k
∈
C
B
k
!
∑
k
∈
C
B
k
!
99
98
eqcomd
⊢
φ
→
∑
k
∈
C
∪
D
B
k
!
∑
k
∈
C
∪
D
B
k
−
∑
k
∈
C
B
k
!
∑
k
∈
C
B
k
!
=
(
∑
k
∈
C
∪
D
B
k
∑
k
∈
C
B
k
)
100
66
81
99
3eqtrd
⊢
φ
→
∑
k
∈
C
∪
D
B
k
!
B
D
!
∑
k
∈
C
B
k
!
=
(
∑
k
∈
C
∪
D
B
k
∑
k
∈
C
B
k
)
101
bccl2
⊢
∑
k
∈
C
B
k
∈
0
…
∑
k
∈
C
∪
D
B
k
→
(
∑
k
∈
C
∪
D
B
k
∑
k
∈
C
B
k
)
∈
ℕ
102
96
101
syl
⊢
φ
→
(
∑
k
∈
C
∪
D
B
k
∑
k
∈
C
B
k
)
∈
ℕ
103
100
102
eqeltrd
⊢
φ
→
∑
k
∈
C
∪
D
B
k
!
B
D
!
∑
k
∈
C
B
k
!
∈
ℕ
104
ssun1
⊢
C
⊆
C
∪
D
105
104
a1i
⊢
φ
→
C
⊆
C
∪
D
106
elmapssres
⊢
B
∈
ℕ
0
C
∪
D
∧
C
⊆
C
∪
D
→
B
↾
C
∈
ℕ
0
C
107
4
105
106
syl2anc
⊢
φ
→
B
↾
C
∈
ℕ
0
C
108
fveq1
⊢
b
=
B
↾
C
→
b
k
=
B
↾
C
k
109
108
adantr
⊢
b
=
B
↾
C
∧
k
∈
C
→
b
k
=
B
↾
C
k
110
fvres
⊢
k
∈
C
→
B
↾
C
k
=
B
k
111
110
adantl
⊢
b
=
B
↾
C
∧
k
∈
C
→
B
↾
C
k
=
B
k
112
109
111
eqtrd
⊢
b
=
B
↾
C
∧
k
∈
C
→
b
k
=
B
k
113
112
sumeq2dv
⊢
b
=
B
↾
C
→
∑
k
∈
C
b
k
=
∑
k
∈
C
B
k
114
113
fveq2d
⊢
b
=
B
↾
C
→
∑
k
∈
C
b
k
!
=
∑
k
∈
C
B
k
!
115
112
fveq2d
⊢
b
=
B
↾
C
∧
k
∈
C
→
b
k
!
=
B
k
!
116
115
prodeq2dv
⊢
b
=
B
↾
C
→
∏
k
∈
C
b
k
!
=
∏
k
∈
C
B
k
!
117
114
116
oveq12d
⊢
b
=
B
↾
C
→
∑
k
∈
C
b
k
!
∏
k
∈
C
b
k
!
=
∑
k
∈
C
B
k
!
∏
k
∈
C
B
k
!
118
117
eleq1d
⊢
b
=
B
↾
C
→
∑
k
∈
C
b
k
!
∏
k
∈
C
b
k
!
∈
ℕ
↔
∑
k
∈
C
B
k
!
∏
k
∈
C
B
k
!
∈
ℕ
119
118
rspccva
⊢
∀
b
∈
ℕ
0
C
∑
k
∈
C
b
k
!
∏
k
∈
C
b
k
!
∈
ℕ
∧
B
↾
C
∈
ℕ
0
C
→
∑
k
∈
C
B
k
!
∏
k
∈
C
B
k
!
∈
ℕ
120
5
107
119
syl2anc
⊢
φ
→
∑
k
∈
C
B
k
!
∏
k
∈
C
B
k
!
∈
ℕ
121
103
120
nnmulcld
⊢
φ
→
∑
k
∈
C
∪
D
B
k
!
B
D
!
∑
k
∈
C
B
k
!
∑
k
∈
C
B
k
!
∏
k
∈
C
B
k
!
∈
ℕ
122
65
121
eqeltrd
⊢
φ
→
∑
k
∈
C
∪
D
B
k
!
∏
k
∈
C
∪
D
B
k
!
∈
ℕ