Metamath Proof Explorer


Theorem meadjun

Description: The measure of the union of two disjoint sets is the sum of the measures, Property 112C (a) of Fremlin1 p. 15. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses meadjun.m φMMeas
meadjun.x S=domM
meadjun.a φAS
meadjun.b φBS
meadjun.dj φAB=
Assertion meadjun φMAB=MA+𝑒MB

Proof

Step Hyp Ref Expression
1 meadjun.m φMMeas
2 meadjun.x S=domM
3 meadjun.a φAS
4 meadjun.b φBS
5 meadjun.dj φAB=
6 iccssxr 0+∞*
7 1 2 meaf φM:S0+∞
8 7 4 ffvelcdmd φMB0+∞
9 6 8 sselid φMB*
10 xaddlid MB*0+𝑒MB=MB
11 9 10 syl φ0+𝑒MB=MB
12 11 eqcomd φMB=0+𝑒MB
13 12 adantr φA=MB=0+𝑒MB
14 uneq1 A=AB=B
15 0un B=B
16 15 a1i A=B=B
17 14 16 eqtrd A=AB=B
18 17 fveq2d A=MAB=MB
19 18 adantl φA=MAB=MB
20 fveq2 A=MA=M
21 20 adantl φA=MA=M
22 1 mea0 φM=0
23 22 adantr φA=M=0
24 21 23 eqtrd φA=MA=0
25 24 oveq1d φA=MA+𝑒MB=0+𝑒MB
26 13 19 25 3eqtr4d φA=MAB=MA+𝑒MB
27 simpl φ¬A=φ
28 5 ad2antrr φ¬A=A=BAB=
29 inidm AA=A
30 29 eqcomi A=AA
31 ineq2 A=BAA=AB
32 30 31 eqtr2id A=BAB=A
33 32 adantl ¬A=A=BAB=A
34 neqne ¬A=A
35 34 adantr ¬A=A=BA
36 33 35 eqnetrd ¬A=A=BAB
37 36 neneqd ¬A=A=B¬AB=
38 37 adantll φ¬A=A=B¬AB=
39 28 38 pm2.65da φ¬A=¬A=B
40 39 neqned φ¬A=AB
41 uniprg ASBSAB=AB
42 3 4 41 syl2anc φAB=AB
43 42 eqcomd φAB=AB
44 43 fveq2d φMAB=MAB
45 44 adantr φABMAB=MAB
46 3 4 prssd φABS
47 prfi ABFin
48 isfinite ABFinABω
49 48 biimpi ABFinABω
50 sdomdom ABωABω
51 49 50 syl ABFinABω
52 47 51 ax-mp ABω
53 52 a1i φABω
54 disjxsn DisjxBx
55 54 a1i A=BDisjxBx
56 preq1 A=BAB=BB
57 dfsn2 B=BB
58 57 eqcomi BB=B
59 58 a1i A=BBB=B
60 56 59 eqtrd A=BAB=B
61 60 disjeq1d A=BDisjxABxDisjxBx
62 55 61 mpbird A=BDisjxABx
63 62 adantl φA=BDisjxABx
64 simpl φ¬A=Bφ
65 neqne ¬A=BAB
66 65 adantl φ¬A=BAB
67 5 adantr φABAB=
68 3 adantr φABAS
69 4 adantr φABBS
70 simpr φABAB
71 id x=Ax=A
72 id x=Bx=B
73 71 72 disjprg ASBSABDisjxABxAB=
74 68 69 70 73 syl3anc φABDisjxABxAB=
75 67 74 mpbird φABDisjxABx
76 64 66 75 syl2anc φ¬A=BDisjxABx
77 63 76 pm2.61dan φDisjxABx
78 1 2 46 53 77 meadjuni φMAB=sum^MAB
79 78 adantr φABMAB=sum^MAB
80 7 3 ffvelcdmd φMA0+∞
81 80 adantr φABMA0+∞
82 8 adantr φABMB0+∞
83 fveq2 x=AMx=MA
84 fveq2 x=BMx=MB
85 68 69 81 82 83 84 70 sge0pr φABsum^xABMx=MA+𝑒MB
86 7 46 fssresd φMAB:AB0+∞
87 86 feqmptd φMAB=xABMABx
88 fvres xABMABx=Mx
89 88 mpteq2ia xABMABx=xABMx
90 89 a1i φxABMABx=xABMx
91 87 90 eqtrd φMAB=xABMx
92 91 fveq2d φsum^MAB=sum^xABMx
93 92 adantr φABsum^MAB=sum^xABMx
94 eqidd φABMA+𝑒MB=MA+𝑒MB
95 85 93 94 3eqtr4d φABsum^MAB=MA+𝑒MB
96 45 79 95 3eqtrd φABMAB=MA+𝑒MB
97 27 40 96 syl2anc φ¬A=MAB=MA+𝑒MB
98 26 97 pm2.61dan φMAB=MA+𝑒MB