Metamath Proof Explorer


Theorem measvuni

Description: The measure of a countable disjoint union is the sum of the measures. This theorem uses a collection rather than a set of subsets of S . (Contributed by Thierry Arnoux, 7-Mar-2017)

Ref Expression
Assertion measvuni MmeasuresSxABSAωDisjxABMxAB=*xAMB

Proof

Step Hyp Ref Expression
1 simp1 MmeasuresSxABSAωDisjxABMmeasuresS
2 rabid xxA|BxAB
3 2 simprbi xxA|BB
4 3 adantl MmeasuresSxxA|BB
5 4 ralrimiva MmeasuresSxxA|BB
6 5 3ad2ant1 MmeasuresSxABSAωDisjxABxxA|BB
7 ssrab2 xA|BA
8 ssct xA|BAAωxA|Bω
9 7 8 mpan AωxA|Bω
10 9 adantr AωDisjxABxA|Bω
11 10 3ad2ant3 MmeasuresSxABSAωDisjxABxA|Bω
12 simp3r MmeasuresSxABSAωDisjxABDisjxAB
13 nfrab1 _xxA|B
14 nfcv _xA
15 13 14 disjss1f xA|BADisjxABDisjxxA|BB
16 7 12 15 mpsyl MmeasuresSxABSAωDisjxABDisjxxA|BB
17 13 measvunilem0 MmeasuresSxxA|BBxA|BωDisjxxA|BBMxxA|BB=*xxA|BMB
18 1 6 11 16 17 syl112anc MmeasuresSxABSAωDisjxABMxxA|BB=*xxA|BMB
19 rabid xxA|BSxABS
20 19 simprbi xxA|BSBS
21 20 adantl MmeasuresSxxA|BSBS
22 21 ralrimiva MmeasuresSxxA|BSBS
23 22 3ad2ant1 MmeasuresSxABSAωDisjxABxxA|BSBS
24 ssrab2 xA|BSA
25 ssct xA|BSAAωxA|BSω
26 24 25 mpan AωxA|BSω
27 26 adantr AωDisjxABxA|BSω
28 27 3ad2ant3 MmeasuresSxABSAωDisjxABxA|BSω
29 nfrab1 _xxA|BS
30 29 14 disjss1f xA|BSADisjxABDisjxxA|BSB
31 24 12 30 mpsyl MmeasuresSxABSAωDisjxABDisjxxA|BSB
32 29 measvunilem MmeasuresSxxA|BSBSxA|BSωDisjxxA|BSBMxxA|BSB=*xxA|BSMB
33 1 23 28 31 32 syl112anc MmeasuresSxABSAωDisjxABMxxA|BSB=*xxA|BSMB
34 18 33 oveq12d MmeasuresSxABSAωDisjxABMxxA|BB+𝑒MxxA|BSB=*xxA|BMB+𝑒*xxA|BSMB
35 nfv xMmeasuresS
36 nfra1 xxABS
37 nfv xAω
38 nfdisj1 xDisjxAB
39 37 38 nfan xAωDisjxAB
40 35 36 39 nf3an xMmeasuresSxABSAωDisjxAB
41 13 29 nfun _xxA|BxA|BS
42 simp2 MmeasuresSxABSAωDisjxABxABS
43 rabid2 A=xA|BSxABS
44 42 43 sylibr MmeasuresSxABSAωDisjxABA=xA|BS
45 elun BSBBS
46 measbase MmeasuresSSransigAlgebra
47 0elsiga SransigAlgebraS
48 snssi SS
49 46 47 48 3syl MmeasuresSS
50 undif SS=S
51 49 50 sylib MmeasuresSS=S
52 51 eleq2d MmeasuresSBSBS
53 45 52 bitr3id MmeasuresSBBSBS
54 53 rabbidv MmeasuresSxA|BBS=xA|BS
55 54 3ad2ant1 MmeasuresSxABSAωDisjxABxA|BBS=xA|BS
56 44 55 eqtr4d MmeasuresSxABSAωDisjxABA=xA|BBS
57 unrab xA|BxA|BS=xA|BBS
58 56 57 eqtr4di MmeasuresSxABSAωDisjxABA=xA|BxA|BS
59 eqidd MmeasuresSxABSAωDisjxABB=B
60 40 14 41 58 59 iuneq12df MmeasuresSxABSAωDisjxABxAB=xxA|BxA|BSB
61 60 fveq2d MmeasuresSxABSAωDisjxABMxAB=MxxA|BxA|BSB
62 iunxun xxA|BxA|BSB=xxA|BBxxA|BSB
63 62 fveq2i MxxA|BxA|BSB=MxxA|BBxxA|BSB
64 61 63 eqtrdi MmeasuresSxABSAωDisjxABMxAB=MxxA|BBxxA|BSB
65 46 3ad2ant1 MmeasuresSxABSAωDisjxABSransigAlgebra
66 47 adantr SransigAlgebraBS
67 elsni BB=
68 67 eleq1d BBSS
69 68 adantl SransigAlgebraBBSS
70 66 69 mpbird SransigAlgebraBBS
71 46 3 70 syl2an MmeasuresSxxA|BBS
72 71 ralrimiva MmeasuresSxxA|BBS
73 72 3ad2ant1 MmeasuresSxABSAωDisjxABxxA|BBS
74 13 sigaclcuni SransigAlgebraxxA|BBSxA|BωxxA|BBS
75 65 73 11 74 syl3anc MmeasuresSxABSAωDisjxABxxA|BBS
76 21 eldifad MmeasuresSxxA|BSBS
77 76 ralrimiva MmeasuresSxxA|BSBS
78 77 3ad2ant1 MmeasuresSxABSAωDisjxABxxA|BSBS
79 29 sigaclcuni SransigAlgebraxxA|BSBSxA|BSωxxA|BSBS
80 65 78 28 79 syl3anc MmeasuresSxABSAωDisjxABxxA|BSBS
81 3 67 syl xxA|BB=
82 81 iuneq2i xxA|BB=xxA|B
83 iun0 xxA|B=
84 82 83 eqtri xxA|BB=
85 ineq1 xxA|BB=xxA|BBxxA|BSB=xxA|BSB
86 0in xxA|BSB=
87 85 86 eqtrdi xxA|BB=xxA|BBxxA|BSB=
88 84 87 mp1i MmeasuresSxABSAωDisjxABxxA|BBxxA|BSB=
89 measun MmeasuresSxxA|BBSxxA|BSBSxxA|BBxxA|BSB=MxxA|BBxxA|BSB=MxxA|BB+𝑒MxxA|BSB
90 1 75 80 88 89 syl121anc MmeasuresSxABSAωDisjxABMxxA|BBxxA|BSB=MxxA|BB+𝑒MxxA|BSB
91 64 90 eqtrd MmeasuresSxABSAωDisjxABMxAB=MxxA|BB+𝑒MxxA|BSB
92 40 58 esumeq1d MmeasuresSxABSAωDisjxAB*xAMB=*xxA|BxA|BSMB
93 ctex xA|BωxA|BV
94 11 93 syl MmeasuresSxABSAωDisjxABxA|BV
95 ctex xA|BSωxA|BSV
96 28 95 syl MmeasuresSxABSAωDisjxABxA|BSV
97 inrab xA|BxA|BS=xA|BBS
98 noel ¬B
99 disjdif S=
100 99 eleq2i BSB
101 98 100 mtbir ¬BS
102 elin BSBBS
103 101 102 mtbi ¬BBS
104 103 rgenw xA¬BBS
105 rabeq0 xA|BBS=xA¬BBS
106 104 105 mpbir xA|BBS=
107 97 106 eqtri xA|BxA|BS=
108 107 a1i MmeasuresSxABSAωDisjxABxA|BxA|BS=
109 1 adantr MmeasuresSxABSAωDisjxABxxA|BMmeasuresS
110 1 71 sylan MmeasuresSxABSAωDisjxABxxA|BBS
111 measvxrge0 MmeasuresSBSMB0+∞
112 109 110 111 syl2anc MmeasuresSxABSAωDisjxABxxA|BMB0+∞
113 1 adantr MmeasuresSxABSAωDisjxABxxA|BSMmeasuresS
114 20 adantl MmeasuresSxABSAωDisjxABxxA|BSBS
115 114 eldifad MmeasuresSxABSAωDisjxABxxA|BSBS
116 113 115 111 syl2anc MmeasuresSxABSAωDisjxABxxA|BSMB0+∞
117 40 13 29 94 96 108 112 116 esumsplit MmeasuresSxABSAωDisjxAB*xxA|BxA|BSMB=*xxA|BMB+𝑒*xxA|BSMB
118 92 117 eqtrd MmeasuresSxABSAωDisjxAB*xAMB=*xxA|BMB+𝑒*xxA|BSMB
119 34 91 118 3eqtr4d MmeasuresSxABSAωDisjxABMxAB=*xAMB