Metamath Proof Explorer


Theorem nmcexi

Description: Lemma for nmcopexi and nmcfnexi . The norm of a continuous linear Hilbert space operator or functional exists. Theorem 3.5(i) of Beran p. 99. (Contributed by Mario Carneiro, 17-Nov-2013) (Proof shortened by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses nmcex.1 y+znormz<yNTz<1
nmcex.2 ST=supm|xnormx1m=NTx*<
nmcex.3 xNTx
nmcex.4 NT0=0
nmcex.5 y2+xy2NTx=NTy2x
Assertion nmcexi ST

Proof

Step Hyp Ref Expression
1 nmcex.1 y+znormz<yNTz<1
2 nmcex.2 ST=supm|xnormx1m=NTx*<
3 nmcex.3 xNTx
4 nmcex.4 NT0=0
5 nmcex.5 y2+xy2NTx=NTy2x
6 eleq1 m=NTxmNTx
7 3 6 syl5ibrcom xm=NTxm
8 7 imp xm=NTxm
9 8 adantrl xnormx1m=NTxm
10 9 rexlimiva xnormx1m=NTxm
11 10 abssi m|xnormx1m=NTx
12 ax-hv0cl 0
13 norm0 norm0=0
14 0le1 01
15 13 14 eqbrtri norm01
16 4 eqcomi 0=NT0
17 15 16 pm3.2i norm010=NT0
18 fveq2 x=0normx=norm0
19 18 breq1d x=0normx1norm01
20 2fveq3 x=0NTx=NT0
21 20 eqeq2d x=00=NTx0=NT0
22 19 21 anbi12d x=0normx10=NTxnorm010=NT0
23 22 rspcev 0norm010=NT0xnormx10=NTx
24 12 17 23 mp2an xnormx10=NTx
25 c0ex 0V
26 eqeq1 m=0m=NTx0=NTx
27 26 anbi2d m=0normx1m=NTxnormx10=NTx
28 27 rexbidv m=0xnormx1m=NTxxnormx10=NTx
29 25 28 elab 0m|xnormx1m=NTxxnormx10=NTx
30 24 29 mpbir 0m|xnormx1m=NTx
31 30 ne0ii m|xnormx1m=NTx
32 2rp 2+
33 rpdivcl 2+y+2y+
34 32 33 mpan y+2y+
35 34 rpred y+2y
36 35 adantr y+znormz<yNTz<12y
37 rpre y+y
38 37 adantr y+xnormx1y
39 38 rehalfcld y+xnormx1y2
40 39 recnd y+xnormx1y2
41 simprl y+xnormx1x
42 hvmulcl y2xy2x
43 40 41 42 syl2anc y+xnormx1y2x
44 normcl y2xnormy2x
45 43 44 syl y+xnormx1normy2x
46 simprr y+xnormx1normx1
47 normcl xnormx
48 47 ad2antrl y+xnormx1normx
49 1red y+xnormx11
50 rphalfcl y+y2+
51 50 adantr y+xnormx1y2+
52 48 49 51 lemul2d y+xnormx1normx1y2normxy21
53 46 52 mpbid y+xnormx1y2normxy21
54 rpcn y2+y2
55 norm-iii y2xnormy2x=y2normx
56 54 55 sylan y2+xnormy2x=y2normx
57 rpre y2+y2
58 rpge0 y2+0y2
59 57 58 absidd y2+y2=y2
60 59 oveq1d y2+y2normx=y2normx
61 60 adantr y2+xy2normx=y2normx
62 56 61 eqtr2d y2+xy2normx=normy2x
63 51 41 62 syl2anc y+xnormx1y2normx=normy2x
64 40 mulridd y+xnormx1y21=y2
65 53 63 64 3brtr3d y+xnormx1normy2xy2
66 rphalflt y+y2<y
67 66 adantr y+xnormx1y2<y
68 45 39 38 65 67 lelttrd y+xnormx1normy2x<y
69 fveq2 z=y2xnormz=normy2x
70 69 breq1d z=y2xnormz<ynormy2x<y
71 2fveq3 z=y2xNTz=NTy2x
72 71 breq1d z=y2xNTz<1NTy2x<1
73 70 72 imbi12d z=y2xnormz<yNTz<1normy2x<yNTy2x<1
74 73 rspcv y2xznormz<yNTz<1normy2x<yNTy2x<1
75 43 74 syl y+xnormx1znormz<yNTz<1normy2x<yNTy2x<1
76 68 75 mpid y+xnormx1znormz<yNTz<1NTy2x<1
77 3 ad2antrl y+xnormx1NTx
78 77 49 51 ltmuldiv2d y+xnormx1y2NTx<1NTx<1y2
79 51 rprecred y+xnormx11y2
80 ltle NTx1y2NTx<1y2NTx1y2
81 77 79 80 syl2anc y+xnormx1NTx<1y2NTx1y2
82 78 81 sylbid y+xnormx1y2NTx<1NTx1y2
83 51 41 5 syl2anc y+xnormx1y2NTx=NTy2x
84 83 breq1d y+xnormx1y2NTx<1NTy2x<1
85 rpcn y+y
86 rpne0 y+y0
87 2cn 2
88 2ne0 20
89 recdiv yy02201y2=2y
90 87 88 89 mpanr12 yy01y2=2y
91 85 86 90 syl2anc y+1y2=2y
92 91 adantr y+xnormx11y2=2y
93 92 breq2d y+xnormx1NTx1y2NTx2y
94 82 84 93 3imtr3d y+xnormx1NTy2x<1NTx2y
95 76 94 syld y+xnormx1znormz<yNTz<1NTx2y
96 95 imp y+xnormx1znormz<yNTz<1NTx2y
97 96 an32s y+znormz<yNTz<1xnormx1NTx2y
98 97 anassrs y+znormz<yNTz<1xnormx1NTx2y
99 breq1 n=NTxn2yNTx2y
100 98 99 syl5ibrcom y+znormz<yNTz<1xnormx1n=NTxn2y
101 100 expimpd y+znormz<yNTz<1xnormx1n=NTxn2y
102 101 rexlimdva y+znormz<yNTz<1xnormx1n=NTxn2y
103 102 alrimiv y+znormz<yNTz<1nxnormx1n=NTxn2y
104 eqeq1 m=nm=NTxn=NTx
105 104 anbi2d m=nnormx1m=NTxnormx1n=NTx
106 105 rexbidv m=nxnormx1m=NTxxnormx1n=NTx
107 106 ralab nm|xnormx1m=NTxnznxnormx1n=NTxnz
108 breq2 z=2ynzn2y
109 108 imbi2d z=2yxnormx1n=NTxnzxnormx1n=NTxn2y
110 109 albidv z=2ynxnormx1n=NTxnznxnormx1n=NTxn2y
111 107 110 bitrid z=2ynm|xnormx1m=NTxnznxnormx1n=NTxn2y
112 111 rspcev 2ynxnormx1n=NTxn2yznm|xnormx1m=NTxnz
113 36 103 112 syl2anc y+znormz<yNTz<1znm|xnormx1m=NTxnz
114 113 rexlimiva y+znormz<yNTz<1znm|xnormx1m=NTxnz
115 1 114 ax-mp znm|xnormx1m=NTxnz
116 supxrre m|xnormx1m=NTxm|xnormx1m=NTxznm|xnormx1m=NTxnzsupm|xnormx1m=NTx*<=supm|xnormx1m=NTx<
117 11 31 115 116 mp3an supm|xnormx1m=NTx*<=supm|xnormx1m=NTx<
118 2 117 eqtri ST=supm|xnormx1m=NTx<
119 suprcl m|xnormx1m=NTxm|xnormx1m=NTxznm|xnormx1m=NTxnzsupm|xnormx1m=NTx<
120 11 31 115 119 mp3an supm|xnormx1m=NTx<
121 118 120 eqeltri ST