Step |
Hyp |
Ref |
Expression |
1 |
|
nnnn0 |
|
2 |
|
blennn0em1 |
|
3 |
1 2
|
sylan2 |
|
4 |
|
fveqeq2 |
|
5 |
|
id |
|
6 |
|
oveq2 |
|
7 |
6
|
oveq1d |
|
8 |
7
|
adantr |
|
9 |
8
|
sumeq2dv |
|
10 |
5 9
|
eqeq12d |
|
11 |
4 10
|
imbi12d |
|
12 |
11
|
rspcva |
|
13 |
|
simpr |
|
14 |
13
|
oveq1d |
|
15 |
|
nncn |
|
16 |
|
pncan1 |
|
17 |
15 16
|
syl |
|
18 |
14 17
|
sylan9eq |
|
19 |
18
|
eqeq2d |
|
20 |
|
nnz |
|
21 |
20
|
adantl |
|
22 |
|
fzval3 |
|
23 |
21 22
|
syl |
|
24 |
23
|
eqcomd |
|
25 |
24
|
sumeq1d |
|
26 |
|
nnnn0 |
|
27 |
|
elnn0uz |
|
28 |
26 27
|
sylib |
|
29 |
28
|
adantl |
|
30 |
|
2nn |
|
31 |
30
|
a1i |
|
32 |
|
elfzelz |
|
33 |
32
|
adantl |
|
34 |
|
nnnn0 |
|
35 |
|
nn0rp0 |
|
36 |
34 35
|
syl |
|
37 |
36
|
ad4antlr |
|
38 |
|
digvalnn0 |
|
39 |
31 33 37 38
|
syl3anc |
|
40 |
39
|
nn0cnd |
|
41 |
|
2nn0 |
|
42 |
41
|
a1i |
|
43 |
|
elfznn0 |
|
44 |
42 43
|
nn0expcld |
|
45 |
44
|
nn0cnd |
|
46 |
45
|
adantl |
|
47 |
40 46
|
mulcld |
|
48 |
|
oveq1 |
|
49 |
|
oveq2 |
|
50 |
48 49
|
oveq12d |
|
51 |
|
2cn |
|
52 |
|
exp0 |
|
53 |
51 52
|
ax-mp |
|
54 |
53
|
oveq2i |
|
55 |
50 54
|
eqtrdi |
|
56 |
29 47 55
|
fsum1p |
|
57 |
|
0dig2nn0e |
|
58 |
34 1 57
|
syl2anr |
|
59 |
58
|
oveq1d |
|
60 |
|
1re |
|
61 |
|
mul02lem2 |
|
62 |
60 61
|
ax-mp |
|
63 |
59 62
|
eqtrdi |
|
64 |
63
|
adantr |
|
65 |
64
|
adantr |
|
66 |
|
1z |
|
67 |
66
|
a1i |
|
68 |
|
0p1e1 |
|
69 |
68 66
|
eqeltri |
|
70 |
69
|
a1i |
|
71 |
30
|
a1i |
|
72 |
|
elfzelz |
|
73 |
72
|
adantl |
|
74 |
36
|
ad4antlr |
|
75 |
71 73 74 38
|
syl3anc |
|
76 |
75
|
nn0cnd |
|
77 |
|
2cnd |
|
78 |
|
elfznn |
|
79 |
78
|
nnnn0d |
|
80 |
68
|
oveq1i |
|
81 |
79 80
|
eleq2s |
|
82 |
77 81
|
expcld |
|
83 |
82
|
adantl |
|
84 |
76 83
|
mulcld |
|
85 |
|
oveq1 |
|
86 |
|
oveq2 |
|
87 |
85 86
|
oveq12d |
|
88 |
67 70 21 84 87
|
fsumshftm |
|
89 |
65 88
|
oveq12d |
|
90 |
1
|
ad4antr |
|
91 |
34
|
ad4antlr |
|
92 |
|
elfzonn0 |
|
93 |
92
|
adantl |
|
94 |
|
dignn0ehalf |
|
95 |
90 91 93 94
|
syl3anc |
|
96 |
|
2cnd |
|
97 |
96 92
|
expp1d |
|
98 |
97
|
adantl |
|
99 |
95 98
|
oveq12d |
|
100 |
30
|
a1i |
|
101 |
|
elfzoelz |
|
102 |
101
|
adantl |
|
103 |
|
nn0rp0 |
|
104 |
1 103
|
syl |
|
105 |
104
|
ad4antr |
|
106 |
|
digvalnn0 |
|
107 |
100 102 105 106
|
syl3anc |
|
108 |
107
|
nn0cnd |
|
109 |
|
2re |
|
110 |
109
|
a1i |
|
111 |
110 92
|
reexpcld |
|
112 |
111
|
recnd |
|
113 |
112
|
adantl |
|
114 |
|
2cnd |
|
115 |
|
mulass |
|
116 |
115
|
eqcomd |
|
117 |
108 113 114 116
|
syl3anc |
|
118 |
99 117
|
eqtrd |
|
119 |
118
|
sumeq2dv |
|
120 |
|
0cn |
|
121 |
|
pncan1 |
|
122 |
120 121
|
ax-mp |
|
123 |
122
|
a1i |
|
124 |
123
|
oveq1d |
|
125 |
|
fzoval |
|
126 |
125
|
eqcomd |
|
127 |
20 126
|
syl |
|
128 |
124 127
|
eqtrd |
|
129 |
128
|
adantl |
|
130 |
129
|
sumeq1d |
|
131 |
130
|
oveq2d |
|
132 |
|
fzofi |
|
133 |
132
|
a1i |
|
134 |
101
|
peano2zd |
|
135 |
134
|
adantl |
|
136 |
36
|
ad4antlr |
|
137 |
|
digvalnn0 |
|
138 |
100 135 136 137
|
syl3anc |
|
139 |
138
|
nn0cnd |
|
140 |
41
|
a1i |
|
141 |
|
peano2nn0 |
|
142 |
92 141
|
syl |
|
143 |
140 142
|
nn0expcld |
|
144 |
143
|
nn0cnd |
|
145 |
144
|
adantl |
|
146 |
139 145
|
mulcld |
|
147 |
133 146
|
fsumcl |
|
148 |
147
|
addid2d |
|
149 |
131 148
|
eqtrd |
|
150 |
|
2cnd |
|
151 |
140 92
|
nn0expcld |
|
152 |
151
|
nn0cnd |
|
153 |
152
|
adantl |
|
154 |
108 153
|
mulcld |
|
155 |
133 150 154
|
fsummulc1 |
|
156 |
119 149 155
|
3eqtr4d |
|
157 |
89 156
|
eqtrd |
|
158 |
25 56 157
|
3eqtrd |
|
159 |
158
|
adantl |
|
160 |
|
oveq1 |
|
161 |
|
oveq2 |
|
162 |
160 161
|
oveq12d |
|
163 |
162
|
cbvsumv |
|
164 |
163
|
a1i |
|
165 |
164
|
eqeq2d |
|
166 |
165
|
biimpac |
|
167 |
166
|
eqcomd |
|
168 |
167
|
oveq1d |
|
169 |
|
nncn |
|
170 |
|
2cnd |
|
171 |
|
2ne0 |
|
172 |
171
|
a1i |
|
173 |
169 170 172
|
divcan1d |
|
174 |
173
|
ad3antlr |
|
175 |
174
|
adantl |
|
176 |
159 168 175
|
3eqtrrd |
|
177 |
176
|
ex |
|
178 |
177
|
imim2i |
|
179 |
178
|
com13 |
|
180 |
19 179
|
sylbid |
|
181 |
180
|
com23 |
|
182 |
181
|
exp31 |
|
183 |
182
|
com25 |
|
184 |
183
|
com14 |
|
185 |
12 184
|
syl |
|
186 |
185
|
ex |
|
187 |
186
|
com25 |
|
188 |
187
|
expdcom |
|
189 |
1 188
|
mpid |
|
190 |
189
|
impcom |
|
191 |
3 190
|
mpd |
|
192 |
191
|
imp |
|