Metamath Proof Explorer


Theorem ofldchr

Description: The characteristic of an ordered field is zero. (Contributed by Thierry Arnoux, 21-Jan-2018) (Proof shortened by AV, 6-Oct-2020)

Ref Expression
Assertion ofldchr FoFieldchrF=0

Proof

Step Hyp Ref Expression
1 eqid odF=odF
2 eqid 1F=1F
3 eqid chrF=chrF
4 1 2 3 chrval odF1F=chrF
5 ofldfld FoFieldFField
6 isfld FFieldFDivRingFCRing
7 6 simplbi FFieldFDivRing
8 drngring FDivRingFRing
9 5 7 8 3syl FoFieldFRing
10 eqid BaseF=BaseF
11 10 2 ringidcl FRing1FBaseF
12 eqid F=F
13 eqid 0F=0F
14 eqid y|yF1F=0F=y|yF1F=0F
15 10 12 13 1 14 odval 1FBaseFodF1F=ify|yF1F=0F=0supy|yF1F=0F<
16 9 11 15 3syl FoFieldodF1F=ify|yF1F=0F=0supy|yF1F=0F<
17 oveq1 n=1nF1F=1F1F
18 17 breq2d n=10F<FnF1F0F<F1F1F
19 18 imbi2d n=1FoField0F<FnF1FFoField0F<F1F1F
20 oveq1 n=mnF1F=mF1F
21 20 breq2d n=m0F<FnF1F0F<FmF1F
22 21 imbi2d n=mFoField0F<FnF1FFoField0F<FmF1F
23 oveq1 n=m+1nF1F=m+1F1F
24 23 breq2d n=m+10F<FnF1F0F<Fm+1F1F
25 24 imbi2d n=m+1FoField0F<FnF1FFoField0F<Fm+1F1F
26 oveq1 n=ynF1F=yF1F
27 26 breq2d n=y0F<FnF1F0F<FyF1F
28 27 imbi2d n=yFoField0F<FnF1FFoField0F<FyF1F
29 eqid <F=<F
30 13 2 29 ofldlt1 FoField0F<F1F
31 9 11 syl FoField1FBaseF
32 10 12 mulg1 1FBaseF1F1F=1F
33 31 32 syl FoField1F1F=1F
34 30 33 breqtrrd FoField0F<F1F1F
35 ofldtos FoFieldFToset
36 tospos FTosetFPoset
37 35 36 syl FoFieldFPoset
38 37 ad2antlr mFoField0F<FmF1FFPoset
39 9 ringgrpd FoFieldFGrp
40 39 ad2antlr mFoField0F<FmF1FFGrp
41 10 13 grpidcl FGrp0FBaseF
42 40 41 syl mFoField0F<FmF1F0FBaseF
43 40 grpmgmd mFoField0F<FmF1FFMgm
44 simpll mFoField0F<FmF1Fm
45 31 ad2antlr mFoField0F<FmF1F1FBaseF
46 10 12 mulgnncl FMgmm1FBaseFmF1FBaseF
47 43 44 45 46 syl3anc mFoField0F<FmF1FmF1FBaseF
48 44 peano2nnd mFoField0F<FmF1Fm+1
49 10 12 mulgnncl FMgmm+11FBaseFm+1F1FBaseF
50 43 48 45 49 syl3anc mFoField0F<FmF1Fm+1F1FBaseF
51 42 47 50 3jca mFoField0F<FmF1F0FBaseFmF1FBaseFm+1F1FBaseF
52 simpr mFoField0F<FmF1F0F<FmF1F
53 simplr mFoField0F<FmF1FFoField
54 isofld FoFieldFFieldFoRing
55 54 simprbi FoFieldFoRing
56 orngogrp FoRingFoGrp
57 53 55 56 3syl mFoField0F<FmF1FFoGrp
58 30 ad2antlr mFoField0F<FmF1F0F<F1F
59 eqid +F=+F
60 10 29 59 ogrpaddlt FoGrp0FBaseF1FBaseFmF1FBaseF0F<F1F0F+FmF1F<F1F+FmF1F
61 57 42 45 47 58 60 syl131anc mFoField0F<FmF1F0F+FmF1F<F1F+FmF1F
62 10 59 13 40 47 grplidd mFoField0F<FmF1F0F+FmF1F=mF1F
63 62 eqcomd mFoField0F<FmF1FmF1F=0F+FmF1F
64 10 12 59 mulgnnp1 m1FBaseFm+1F1F=mF1F+F1F
65 44 45 64 syl2anc mFoField0F<FmF1Fm+1F1F=mF1F+F1F
66 ringcmn FRingFCMnd
67 53 9 66 3syl mFoField0F<FmF1FFCMnd
68 10 59 cmncom FCMndmF1FBaseF1FBaseFmF1F+F1F=1F+FmF1F
69 67 47 45 68 syl3anc mFoField0F<FmF1FmF1F+F1F=1F+FmF1F
70 65 69 eqtrd mFoField0F<FmF1Fm+1F1F=1F+FmF1F
71 61 63 70 3brtr4d mFoField0F<FmF1FmF1F<Fm+1F1F
72 10 29 plttr FPoset0FBaseFmF1FBaseFm+1F1FBaseF0F<FmF1FmF1F<Fm+1F1F0F<Fm+1F1F
73 72 imp FPoset0FBaseFmF1FBaseFm+1F1FBaseF0F<FmF1FmF1F<Fm+1F1F0F<Fm+1F1F
74 38 51 52 71 73 syl22anc mFoField0F<FmF1F0F<Fm+1F1F
75 74 exp31 mFoField0F<FmF1F0F<Fm+1F1F
76 75 a2d mFoField0F<FmF1FFoField0F<Fm+1F1F
77 19 22 25 28 34 76 nnind yFoField0F<FyF1F
78 77 impcom FoFieldy0F<FyF1F
79 fvex 0FV
80 ovex yF1FV
81 29 pltne FoField0FVyF1FV0F<FyF1F0FyF1F
82 79 80 81 mp3an23 FoField0F<FyF1F0FyF1F
83 82 adantr FoFieldy0F<FyF1F0FyF1F
84 78 83 mpd FoFieldy0FyF1F
85 84 necomd FoFieldyyF1F0F
86 85 neneqd FoFieldy¬yF1F=0F
87 86 ralrimiva FoFieldy¬yF1F=0F
88 rabeq0 y|yF1F=0F=y¬yF1F=0F
89 87 88 sylibr FoFieldy|yF1F=0F=
90 89 iftrued FoFieldify|yF1F=0F=0supy|yF1F=0F<=0
91 16 90 eqtrd FoFieldodF1F=0
92 4 91 eqtr3id FoFieldchrF=0