Metamath Proof Explorer


Theorem ofldchr

Description: The characteristic of an ordered field is zero. (Contributed by Thierry Arnoux, 21-Jan-2018) (Proof shortened by AV, 6-Oct-2020)

Ref Expression
Assertion ofldchr F oField chr F = 0

Proof

Step Hyp Ref Expression
1 eqid od F = od F
2 eqid 1 F = 1 F
3 eqid chr F = chr F
4 1 2 3 chrval od F 1 F = chr F
5 ofldfld F oField F Field
6 isfld F Field F DivRing F CRing
7 6 simplbi F Field F DivRing
8 drngring F DivRing F Ring
9 5 7 8 3syl F oField F Ring
10 eqid Base F = Base F
11 10 2 ringidcl F Ring 1 F Base F
12 eqid F = F
13 eqid 0 F = 0 F
14 eqid y | y F 1 F = 0 F = y | y F 1 F = 0 F
15 10 12 13 1 14 odval 1 F Base F od F 1 F = if y | y F 1 F = 0 F = 0 sup y | y F 1 F = 0 F <
16 9 11 15 3syl F oField od F 1 F = if y | y F 1 F = 0 F = 0 sup y | y F 1 F = 0 F <
17 oveq1 n = 1 n F 1 F = 1 F 1 F
18 17 breq2d n = 1 0 F < F n F 1 F 0 F < F 1 F 1 F
19 18 imbi2d n = 1 F oField 0 F < F n F 1 F F oField 0 F < F 1 F 1 F
20 oveq1 n = m n F 1 F = m F 1 F
21 20 breq2d n = m 0 F < F n F 1 F 0 F < F m F 1 F
22 21 imbi2d n = m F oField 0 F < F n F 1 F F oField 0 F < F m F 1 F
23 oveq1 n = m + 1 n F 1 F = m + 1 F 1 F
24 23 breq2d n = m + 1 0 F < F n F 1 F 0 F < F m + 1 F 1 F
25 24 imbi2d n = m + 1 F oField 0 F < F n F 1 F F oField 0 F < F m + 1 F 1 F
26 oveq1 n = y n F 1 F = y F 1 F
27 26 breq2d n = y 0 F < F n F 1 F 0 F < F y F 1 F
28 27 imbi2d n = y F oField 0 F < F n F 1 F F oField 0 F < F y F 1 F
29 eqid < F = < F
30 13 2 29 ofldlt1 F oField 0 F < F 1 F
31 9 11 syl F oField 1 F Base F
32 10 12 mulg1 1 F Base F 1 F 1 F = 1 F
33 31 32 syl F oField 1 F 1 F = 1 F
34 30 33 breqtrrd F oField 0 F < F 1 F 1 F
35 ofldtos F oField F Toset
36 tospos F Toset F Poset
37 35 36 syl F oField F Poset
38 37 ad2antlr m F oField 0 F < F m F 1 F F Poset
39 ringgrp F Ring F Grp
40 9 39 syl F oField F Grp
41 40 ad2antlr m F oField 0 F < F m F 1 F F Grp
42 10 13 grpidcl F Grp 0 F Base F
43 41 42 syl m F oField 0 F < F m F 1 F 0 F Base F
44 grpmnd F Grp F Mnd
45 mndmgm F Mnd F Mgm
46 44 45 syl F Grp F Mgm
47 41 46 syl m F oField 0 F < F m F 1 F F Mgm
48 simpll m F oField 0 F < F m F 1 F m
49 31 ad2antlr m F oField 0 F < F m F 1 F 1 F Base F
50 10 12 mulgnncl F Mgm m 1 F Base F m F 1 F Base F
51 47 48 49 50 syl3anc m F oField 0 F < F m F 1 F m F 1 F Base F
52 48 peano2nnd m F oField 0 F < F m F 1 F m + 1
53 10 12 mulgnncl F Mgm m + 1 1 F Base F m + 1 F 1 F Base F
54 47 52 49 53 syl3anc m F oField 0 F < F m F 1 F m + 1 F 1 F Base F
55 43 51 54 3jca m F oField 0 F < F m F 1 F 0 F Base F m F 1 F Base F m + 1 F 1 F Base F
56 simpr m F oField 0 F < F m F 1 F 0 F < F m F 1 F
57 simplr m F oField 0 F < F m F 1 F F oField
58 isofld F oField F Field F oRing
59 58 simprbi F oField F oRing
60 orngogrp F oRing F oGrp
61 57 59 60 3syl m F oField 0 F < F m F 1 F F oGrp
62 30 ad2antlr m F oField 0 F < F m F 1 F 0 F < F 1 F
63 eqid + F = + F
64 10 29 63 ogrpaddlt F oGrp 0 F Base F 1 F Base F m F 1 F Base F 0 F < F 1 F 0 F + F m F 1 F < F 1 F + F m F 1 F
65 61 43 49 51 62 64 syl131anc m F oField 0 F < F m F 1 F 0 F + F m F 1 F < F 1 F + F m F 1 F
66 10 63 13 grplid F Grp m F 1 F Base F 0 F + F m F 1 F = m F 1 F
67 41 51 66 syl2anc m F oField 0 F < F m F 1 F 0 F + F m F 1 F = m F 1 F
68 67 eqcomd m F oField 0 F < F m F 1 F m F 1 F = 0 F + F m F 1 F
69 10 12 63 mulgnnp1 m 1 F Base F m + 1 F 1 F = m F 1 F + F 1 F
70 48 49 69 syl2anc m F oField 0 F < F m F 1 F m + 1 F 1 F = m F 1 F + F 1 F
71 ringcmn F Ring F CMnd
72 57 9 71 3syl m F oField 0 F < F m F 1 F F CMnd
73 10 63 cmncom F CMnd m F 1 F Base F 1 F Base F m F 1 F + F 1 F = 1 F + F m F 1 F
74 72 51 49 73 syl3anc m F oField 0 F < F m F 1 F m F 1 F + F 1 F = 1 F + F m F 1 F
75 70 74 eqtrd m F oField 0 F < F m F 1 F m + 1 F 1 F = 1 F + F m F 1 F
76 65 68 75 3brtr4d m F oField 0 F < F m F 1 F m F 1 F < F m + 1 F 1 F
77 10 29 plttr F Poset 0 F Base F m F 1 F Base F m + 1 F 1 F Base F 0 F < F m F 1 F m F 1 F < F m + 1 F 1 F 0 F < F m + 1 F 1 F
78 77 imp F Poset 0 F Base F m F 1 F Base F m + 1 F 1 F Base F 0 F < F m F 1 F m F 1 F < F m + 1 F 1 F 0 F < F m + 1 F 1 F
79 38 55 56 76 78 syl22anc m F oField 0 F < F m F 1 F 0 F < F m + 1 F 1 F
80 79 exp31 m F oField 0 F < F m F 1 F 0 F < F m + 1 F 1 F
81 80 a2d m F oField 0 F < F m F 1 F F oField 0 F < F m + 1 F 1 F
82 19 22 25 28 34 81 nnind y F oField 0 F < F y F 1 F
83 82 impcom F oField y 0 F < F y F 1 F
84 fvex 0 F V
85 ovex y F 1 F V
86 29 pltne F oField 0 F V y F 1 F V 0 F < F y F 1 F 0 F y F 1 F
87 84 85 86 mp3an23 F oField 0 F < F y F 1 F 0 F y F 1 F
88 87 adantr F oField y 0 F < F y F 1 F 0 F y F 1 F
89 83 88 mpd F oField y 0 F y F 1 F
90 89 necomd F oField y y F 1 F 0 F
91 90 neneqd F oField y ¬ y F 1 F = 0 F
92 91 ralrimiva F oField y ¬ y F 1 F = 0 F
93 rabeq0 y | y F 1 F = 0 F = y ¬ y F 1 F = 0 F
94 92 93 sylibr F oField y | y F 1 F = 0 F =
95 94 iftrued F oField if y | y F 1 F = 0 F = 0 sup y | y F 1 F = 0 F < = 0
96 16 95 eqtrd F oField od F 1 F = 0
97 4 96 syl5eqr F oField chr F = 0