Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Ordinal isomorphism, Hartogs's theorem
ordiso2
Next ⟩
ordiso
Metamath Proof Explorer
Ascii
Unicode
Theorem
ordiso2
Description:
Generalize
ordiso
to proper classes.
(Contributed by
Mario Carneiro
, 24-Jun-2015)
Ref
Expression
Assertion
ordiso2
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
→
A
=
B
Proof
Step
Hyp
Ref
Expression
1
ordsson
⊢
Ord
A
→
A
⊆
On
2
1
3ad2ant2
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
→
A
⊆
On
3
2
sseld
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
→
x
∈
A
→
x
∈
On
4
eleq1w
⊢
x
=
y
→
x
∈
A
↔
y
∈
A
5
fveq2
⊢
x
=
y
→
F
x
=
F
y
6
id
⊢
x
=
y
→
x
=
y
7
5
6
eqeq12d
⊢
x
=
y
→
F
x
=
x
↔
F
y
=
y
8
4
7
imbi12d
⊢
x
=
y
→
x
∈
A
→
F
x
=
x
↔
y
∈
A
→
F
y
=
y
9
8
imbi2d
⊢
x
=
y
→
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
→
x
∈
A
→
F
x
=
x
↔
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
→
y
∈
A
→
F
y
=
y
10
r19.21v
⊢
∀
y
∈
x
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
→
y
∈
A
→
F
y
=
y
↔
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
→
∀
y
∈
x
y
∈
A
→
F
y
=
y
11
ordelss
⊢
Ord
A
∧
x
∈
A
→
x
⊆
A
12
11
3ad2antl2
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
x
∈
A
→
x
⊆
A
13
12
sselda
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
x
∈
A
∧
y
∈
x
→
y
∈
A
14
pm5.5
⊢
y
∈
A
→
y
∈
A
→
F
y
=
y
↔
F
y
=
y
15
13
14
syl
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
x
∈
A
∧
y
∈
x
→
y
∈
A
→
F
y
=
y
↔
F
y
=
y
16
15
ralbidva
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
x
∈
A
→
∀
y
∈
x
y
∈
A
→
F
y
=
y
↔
∀
y
∈
x
F
y
=
y
17
isof1o
⊢
F
Isom
E
,
E
A
B
→
F
:
A
⟶
1-1 onto
B
18
17
3ad2ant1
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
→
F
:
A
⟶
1-1 onto
B
19
18
ad2antrr
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
x
∈
A
∧
∀
y
∈
x
F
y
=
y
∧
z
∈
F
x
→
F
:
A
⟶
1-1 onto
B
20
simpll3
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
x
∈
A
∧
∀
y
∈
x
F
y
=
y
∧
z
∈
F
x
→
Ord
B
21
simpr
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
x
∈
A
∧
∀
y
∈
x
F
y
=
y
∧
z
∈
F
x
→
z
∈
F
x
22
f1of
⊢
F
:
A
⟶
1-1 onto
B
→
F
:
A
⟶
B
23
17
22
syl
⊢
F
Isom
E
,
E
A
B
→
F
:
A
⟶
B
24
23
3ad2ant1
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
→
F
:
A
⟶
B
25
24
ad2antrr
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
x
∈
A
∧
∀
y
∈
x
F
y
=
y
∧
z
∈
F
x
→
F
:
A
⟶
B
26
simplrl
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
x
∈
A
∧
∀
y
∈
x
F
y
=
y
∧
z
∈
F
x
→
x
∈
A
27
25
26
ffvelcdmd
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
x
∈
A
∧
∀
y
∈
x
F
y
=
y
∧
z
∈
F
x
→
F
x
∈
B
28
21
27
jca
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
x
∈
A
∧
∀
y
∈
x
F
y
=
y
∧
z
∈
F
x
→
z
∈
F
x
∧
F
x
∈
B
29
ordtr1
⊢
Ord
B
→
z
∈
F
x
∧
F
x
∈
B
→
z
∈
B
30
20
28
29
sylc
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
x
∈
A
∧
∀
y
∈
x
F
y
=
y
∧
z
∈
F
x
→
z
∈
B
31
f1ocnvfv2
⊢
F
:
A
⟶
1-1 onto
B
∧
z
∈
B
→
F
F
-1
z
=
z
32
19
30
31
syl2anc
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
x
∈
A
∧
∀
y
∈
x
F
y
=
y
∧
z
∈
F
x
→
F
F
-1
z
=
z
33
32
21
eqeltrd
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
x
∈
A
∧
∀
y
∈
x
F
y
=
y
∧
z
∈
F
x
→
F
F
-1
z
∈
F
x
34
simpll1
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
x
∈
A
∧
∀
y
∈
x
F
y
=
y
∧
z
∈
F
x
→
F
Isom
E
,
E
A
B
35
f1ocnv
⊢
F
:
A
⟶
1-1 onto
B
→
F
-1
:
B
⟶
1-1 onto
A
36
f1of
⊢
F
-1
:
B
⟶
1-1 onto
A
→
F
-1
:
B
⟶
A
37
19
35
36
3syl
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
x
∈
A
∧
∀
y
∈
x
F
y
=
y
∧
z
∈
F
x
→
F
-1
:
B
⟶
A
38
37
30
ffvelcdmd
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
x
∈
A
∧
∀
y
∈
x
F
y
=
y
∧
z
∈
F
x
→
F
-1
z
∈
A
39
isorel
⊢
F
Isom
E
,
E
A
B
∧
F
-1
z
∈
A
∧
x
∈
A
→
F
-1
z
E
x
↔
F
F
-1
z
E
F
x
40
34
38
26
39
syl12anc
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
x
∈
A
∧
∀
y
∈
x
F
y
=
y
∧
z
∈
F
x
→
F
-1
z
E
x
↔
F
F
-1
z
E
F
x
41
epel
⊢
F
-1
z
E
x
↔
F
-1
z
∈
x
42
fvex
⊢
F
x
∈
V
43
42
epeli
⊢
F
F
-1
z
E
F
x
↔
F
F
-1
z
∈
F
x
44
40
41
43
3bitr3g
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
x
∈
A
∧
∀
y
∈
x
F
y
=
y
∧
z
∈
F
x
→
F
-1
z
∈
x
↔
F
F
-1
z
∈
F
x
45
33
44
mpbird
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
x
∈
A
∧
∀
y
∈
x
F
y
=
y
∧
z
∈
F
x
→
F
-1
z
∈
x
46
simplrr
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
x
∈
A
∧
∀
y
∈
x
F
y
=
y
∧
z
∈
F
x
→
∀
y
∈
x
F
y
=
y
47
fveq2
⊢
y
=
F
-1
z
→
F
y
=
F
F
-1
z
48
id
⊢
y
=
F
-1
z
→
y
=
F
-1
z
49
47
48
eqeq12d
⊢
y
=
F
-1
z
→
F
y
=
y
↔
F
F
-1
z
=
F
-1
z
50
49
rspcv
⊢
F
-1
z
∈
x
→
∀
y
∈
x
F
y
=
y
→
F
F
-1
z
=
F
-1
z
51
45
46
50
sylc
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
x
∈
A
∧
∀
y
∈
x
F
y
=
y
∧
z
∈
F
x
→
F
F
-1
z
=
F
-1
z
52
32
51
eqtr3d
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
x
∈
A
∧
∀
y
∈
x
F
y
=
y
∧
z
∈
F
x
→
z
=
F
-1
z
53
52
45
eqeltrd
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
x
∈
A
∧
∀
y
∈
x
F
y
=
y
∧
z
∈
F
x
→
z
∈
x
54
simprr
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
x
∈
A
∧
∀
y
∈
x
F
y
=
y
→
∀
y
∈
x
F
y
=
y
55
fveq2
⊢
y
=
z
→
F
y
=
F
z
56
id
⊢
y
=
z
→
y
=
z
57
55
56
eqeq12d
⊢
y
=
z
→
F
y
=
y
↔
F
z
=
z
58
57
rspccva
⊢
∀
y
∈
x
F
y
=
y
∧
z
∈
x
→
F
z
=
z
59
54
58
sylan
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
x
∈
A
∧
∀
y
∈
x
F
y
=
y
∧
z
∈
x
→
F
z
=
z
60
epel
⊢
z
E
x
↔
z
∈
x
61
60
biimpri
⊢
z
∈
x
→
z
E
x
62
61
adantl
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
x
∈
A
∧
∀
y
∈
x
F
y
=
y
∧
z
∈
x
→
z
E
x
63
simpll1
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
x
∈
A
∧
∀
y
∈
x
F
y
=
y
∧
z
∈
x
→
F
Isom
E
,
E
A
B
64
simpl2
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
x
∈
A
∧
∀
y
∈
x
F
y
=
y
→
Ord
A
65
simprl
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
x
∈
A
∧
∀
y
∈
x
F
y
=
y
→
x
∈
A
66
64
65
11
syl2anc
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
x
∈
A
∧
∀
y
∈
x
F
y
=
y
→
x
⊆
A
67
66
sselda
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
x
∈
A
∧
∀
y
∈
x
F
y
=
y
∧
z
∈
x
→
z
∈
A
68
simplrl
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
x
∈
A
∧
∀
y
∈
x
F
y
=
y
∧
z
∈
x
→
x
∈
A
69
isorel
⊢
F
Isom
E
,
E
A
B
∧
z
∈
A
∧
x
∈
A
→
z
E
x
↔
F
z
E
F
x
70
63
67
68
69
syl12anc
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
x
∈
A
∧
∀
y
∈
x
F
y
=
y
∧
z
∈
x
→
z
E
x
↔
F
z
E
F
x
71
62
70
mpbid
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
x
∈
A
∧
∀
y
∈
x
F
y
=
y
∧
z
∈
x
→
F
z
E
F
x
72
42
epeli
⊢
F
z
E
F
x
↔
F
z
∈
F
x
73
71
72
sylib
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
x
∈
A
∧
∀
y
∈
x
F
y
=
y
∧
z
∈
x
→
F
z
∈
F
x
74
59
73
eqeltrrd
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
x
∈
A
∧
∀
y
∈
x
F
y
=
y
∧
z
∈
x
→
z
∈
F
x
75
53
74
impbida
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
x
∈
A
∧
∀
y
∈
x
F
y
=
y
→
z
∈
F
x
↔
z
∈
x
76
75
eqrdv
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
x
∈
A
∧
∀
y
∈
x
F
y
=
y
→
F
x
=
x
77
76
expr
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
x
∈
A
→
∀
y
∈
x
F
y
=
y
→
F
x
=
x
78
16
77
sylbid
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
x
∈
A
→
∀
y
∈
x
y
∈
A
→
F
y
=
y
→
F
x
=
x
79
78
ex
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
→
x
∈
A
→
∀
y
∈
x
y
∈
A
→
F
y
=
y
→
F
x
=
x
80
79
com23
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
→
∀
y
∈
x
y
∈
A
→
F
y
=
y
→
x
∈
A
→
F
x
=
x
81
80
a2i
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
→
∀
y
∈
x
y
∈
A
→
F
y
=
y
→
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
→
x
∈
A
→
F
x
=
x
82
81
a1i
⊢
x
∈
On
→
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
→
∀
y
∈
x
y
∈
A
→
F
y
=
y
→
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
→
x
∈
A
→
F
x
=
x
83
10
82
biimtrid
⊢
x
∈
On
→
∀
y
∈
x
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
→
y
∈
A
→
F
y
=
y
→
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
→
x
∈
A
→
F
x
=
x
84
9
83
tfis2
⊢
x
∈
On
→
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
→
x
∈
A
→
F
x
=
x
85
84
com3l
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
→
x
∈
A
→
x
∈
On
→
F
x
=
x
86
3
85
mpdd
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
→
x
∈
A
→
F
x
=
x
87
86
ralrimiv
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
→
∀
x
∈
A
F
x
=
x
88
fveq2
⊢
x
=
z
→
F
x
=
F
z
89
id
⊢
x
=
z
→
x
=
z
90
88
89
eqeq12d
⊢
x
=
z
→
F
x
=
x
↔
F
z
=
z
91
90
rspccva
⊢
∀
x
∈
A
F
x
=
x
∧
z
∈
A
→
F
z
=
z
92
91
adantll
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
∀
x
∈
A
F
x
=
x
∧
z
∈
A
→
F
z
=
z
93
23
ffvelcdmda
⊢
F
Isom
E
,
E
A
B
∧
z
∈
A
→
F
z
∈
B
94
93
3ad2antl1
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
z
∈
A
→
F
z
∈
B
95
94
adantlr
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
∀
x
∈
A
F
x
=
x
∧
z
∈
A
→
F
z
∈
B
96
92
95
eqeltrrd
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
∀
x
∈
A
F
x
=
x
∧
z
∈
A
→
z
∈
B
97
96
ex
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
∀
x
∈
A
F
x
=
x
→
z
∈
A
→
z
∈
B
98
simpl1
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
∀
x
∈
A
F
x
=
x
→
F
Isom
E
,
E
A
B
99
f1ofo
⊢
F
:
A
⟶
1-1 onto
B
→
F
:
A
⟶
onto
B
100
forn
⊢
F
:
A
⟶
onto
B
→
ran
F
=
B
101
17
99
100
3syl
⊢
F
Isom
E
,
E
A
B
→
ran
F
=
B
102
98
101
syl
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
∀
x
∈
A
F
x
=
x
→
ran
F
=
B
103
102
eleq2d
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
∀
x
∈
A
F
x
=
x
→
z
∈
ran
F
↔
z
∈
B
104
f1ofn
⊢
F
:
A
⟶
1-1 onto
B
→
F
Fn
A
105
17
104
syl
⊢
F
Isom
E
,
E
A
B
→
F
Fn
A
106
105
3ad2ant1
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
→
F
Fn
A
107
106
adantr
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
∀
x
∈
A
F
x
=
x
→
F
Fn
A
108
fvelrnb
⊢
F
Fn
A
→
z
∈
ran
F
↔
∃
w
∈
A
F
w
=
z
109
107
108
syl
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
∀
x
∈
A
F
x
=
x
→
z
∈
ran
F
↔
∃
w
∈
A
F
w
=
z
110
103
109
bitr3d
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
∀
x
∈
A
F
x
=
x
→
z
∈
B
↔
∃
w
∈
A
F
w
=
z
111
fveq2
⊢
x
=
w
→
F
x
=
F
w
112
id
⊢
x
=
w
→
x
=
w
113
111
112
eqeq12d
⊢
x
=
w
→
F
x
=
x
↔
F
w
=
w
114
113
rspcv
⊢
w
∈
A
→
∀
x
∈
A
F
x
=
x
→
F
w
=
w
115
114
a1i
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
→
w
∈
A
→
∀
x
∈
A
F
x
=
x
→
F
w
=
w
116
simpr
⊢
F
w
=
w
∧
F
w
=
z
→
F
w
=
z
117
simpl
⊢
F
w
=
w
∧
F
w
=
z
→
F
w
=
w
118
116
117
eqtr3d
⊢
F
w
=
w
∧
F
w
=
z
→
z
=
w
119
118
adantl
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
w
∈
A
∧
F
w
=
w
∧
F
w
=
z
→
z
=
w
120
simplr
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
w
∈
A
∧
F
w
=
w
∧
F
w
=
z
→
w
∈
A
121
119
120
eqeltrd
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
w
∈
A
∧
F
w
=
w
∧
F
w
=
z
→
z
∈
A
122
121
exp43
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
→
w
∈
A
→
F
w
=
w
→
F
w
=
z
→
z
∈
A
123
115
122
syldd
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
→
w
∈
A
→
∀
x
∈
A
F
x
=
x
→
F
w
=
z
→
z
∈
A
124
123
com23
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
→
∀
x
∈
A
F
x
=
x
→
w
∈
A
→
F
w
=
z
→
z
∈
A
125
124
imp
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
∀
x
∈
A
F
x
=
x
→
w
∈
A
→
F
w
=
z
→
z
∈
A
126
125
rexlimdv
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
∀
x
∈
A
F
x
=
x
→
∃
w
∈
A
F
w
=
z
→
z
∈
A
127
110
126
sylbid
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
∀
x
∈
A
F
x
=
x
→
z
∈
B
→
z
∈
A
128
97
127
impbid
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
∀
x
∈
A
F
x
=
x
→
z
∈
A
↔
z
∈
B
129
128
eqrdv
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
∧
∀
x
∈
A
F
x
=
x
→
A
=
B
130
87
129
mpdan
⊢
F
Isom
E
,
E
A
B
∧
Ord
A
∧
Ord
B
→
A
=
B