| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ordsson |
|
| 2 |
1
|
3ad2ant2 |
|
| 3 |
2
|
sseld |
|
| 4 |
|
eleq1w |
|
| 5 |
|
fveq2 |
|
| 6 |
|
id |
|
| 7 |
5 6
|
eqeq12d |
|
| 8 |
4 7
|
imbi12d |
|
| 9 |
8
|
imbi2d |
|
| 10 |
|
r19.21v |
|
| 11 |
|
ordelss |
|
| 12 |
11
|
3ad2antl2 |
|
| 13 |
12
|
sselda |
|
| 14 |
|
pm5.5 |
|
| 15 |
13 14
|
syl |
|
| 16 |
15
|
ralbidva |
|
| 17 |
|
isof1o |
|
| 18 |
17
|
3ad2ant1 |
|
| 19 |
18
|
ad2antrr |
|
| 20 |
|
simpll3 |
|
| 21 |
|
simpr |
|
| 22 |
|
f1of |
|
| 23 |
17 22
|
syl |
|
| 24 |
23
|
3ad2ant1 |
|
| 25 |
24
|
ad2antrr |
|
| 26 |
|
simplrl |
|
| 27 |
25 26
|
ffvelcdmd |
|
| 28 |
21 27
|
jca |
|
| 29 |
|
ordtr1 |
|
| 30 |
20 28 29
|
sylc |
|
| 31 |
|
f1ocnvfv2 |
|
| 32 |
19 30 31
|
syl2anc |
|
| 33 |
32 21
|
eqeltrd |
|
| 34 |
|
simpll1 |
|
| 35 |
|
f1ocnv |
|
| 36 |
|
f1of |
|
| 37 |
19 35 36
|
3syl |
|
| 38 |
37 30
|
ffvelcdmd |
|
| 39 |
|
isorel |
|
| 40 |
34 38 26 39
|
syl12anc |
|
| 41 |
|
epel |
|
| 42 |
|
fvex |
|
| 43 |
42
|
epeli |
|
| 44 |
40 41 43
|
3bitr3g |
|
| 45 |
33 44
|
mpbird |
|
| 46 |
|
simplrr |
|
| 47 |
|
fveq2 |
|
| 48 |
|
id |
|
| 49 |
47 48
|
eqeq12d |
|
| 50 |
49
|
rspcv |
|
| 51 |
45 46 50
|
sylc |
|
| 52 |
32 51
|
eqtr3d |
|
| 53 |
52 45
|
eqeltrd |
|
| 54 |
|
simprr |
|
| 55 |
|
fveq2 |
|
| 56 |
|
id |
|
| 57 |
55 56
|
eqeq12d |
|
| 58 |
57
|
rspccva |
|
| 59 |
54 58
|
sylan |
|
| 60 |
|
epel |
|
| 61 |
60
|
biimpri |
|
| 62 |
61
|
adantl |
|
| 63 |
|
simpll1 |
|
| 64 |
|
simpl2 |
|
| 65 |
|
simprl |
|
| 66 |
64 65 11
|
syl2anc |
|
| 67 |
66
|
sselda |
|
| 68 |
|
simplrl |
|
| 69 |
|
isorel |
|
| 70 |
63 67 68 69
|
syl12anc |
|
| 71 |
62 70
|
mpbid |
|
| 72 |
42
|
epeli |
|
| 73 |
71 72
|
sylib |
|
| 74 |
59 73
|
eqeltrrd |
|
| 75 |
53 74
|
impbida |
|
| 76 |
75
|
eqrdv |
|
| 77 |
76
|
expr |
|
| 78 |
16 77
|
sylbid |
|
| 79 |
78
|
ex |
|
| 80 |
79
|
com23 |
|
| 81 |
80
|
a2i |
|
| 82 |
81
|
a1i |
|
| 83 |
10 82
|
biimtrid |
|
| 84 |
9 83
|
tfis2 |
|
| 85 |
84
|
com3l |
|
| 86 |
3 85
|
mpdd |
|
| 87 |
86
|
ralrimiv |
|
| 88 |
|
fveq2 |
|
| 89 |
|
id |
|
| 90 |
88 89
|
eqeq12d |
|
| 91 |
90
|
rspccva |
|
| 92 |
91
|
adantll |
|
| 93 |
23
|
ffvelcdmda |
|
| 94 |
93
|
3ad2antl1 |
|
| 95 |
94
|
adantlr |
|
| 96 |
92 95
|
eqeltrrd |
|
| 97 |
96
|
ex |
|
| 98 |
|
simpl1 |
|
| 99 |
|
f1ofo |
|
| 100 |
|
forn |
|
| 101 |
17 99 100
|
3syl |
|
| 102 |
98 101
|
syl |
|
| 103 |
102
|
eleq2d |
|
| 104 |
|
f1ofn |
|
| 105 |
17 104
|
syl |
|
| 106 |
105
|
3ad2ant1 |
|
| 107 |
106
|
adantr |
|
| 108 |
|
fvelrnb |
|
| 109 |
107 108
|
syl |
|
| 110 |
103 109
|
bitr3d |
|
| 111 |
|
fveq2 |
|
| 112 |
|
id |
|
| 113 |
111 112
|
eqeq12d |
|
| 114 |
113
|
rspcv |
|
| 115 |
114
|
a1i |
|
| 116 |
|
simpr |
|
| 117 |
|
simpl |
|
| 118 |
116 117
|
eqtr3d |
|
| 119 |
118
|
adantl |
|
| 120 |
|
simplr |
|
| 121 |
119 120
|
eqeltrd |
|
| 122 |
121
|
exp43 |
|
| 123 |
115 122
|
syldd |
|
| 124 |
123
|
com23 |
|
| 125 |
124
|
imp |
|
| 126 |
125
|
rexlimdv |
|
| 127 |
110 126
|
sylbid |
|
| 128 |
97 127
|
impbid |
|
| 129 |
128
|
eqrdv |
|
| 130 |
87 129
|
mpdan |
|