Metamath Proof Explorer


Theorem ordiso2

Description: Generalize ordiso to proper classes. (Contributed by Mario Carneiro, 24-Jun-2015)

Ref Expression
Assertion ordiso2 FIsomE,EABOrdAOrdBA=B

Proof

Step Hyp Ref Expression
1 ordsson OrdAAOn
2 1 3ad2ant2 FIsomE,EABOrdAOrdBAOn
3 2 sseld FIsomE,EABOrdAOrdBxAxOn
4 eleq1w x=yxAyA
5 fveq2 x=yFx=Fy
6 id x=yx=y
7 5 6 eqeq12d x=yFx=xFy=y
8 4 7 imbi12d x=yxAFx=xyAFy=y
9 8 imbi2d x=yFIsomE,EABOrdAOrdBxAFx=xFIsomE,EABOrdAOrdByAFy=y
10 r19.21v yxFIsomE,EABOrdAOrdByAFy=yFIsomE,EABOrdAOrdByxyAFy=y
11 ordelss OrdAxAxA
12 11 3ad2antl2 FIsomE,EABOrdAOrdBxAxA
13 12 sselda FIsomE,EABOrdAOrdBxAyxyA
14 pm5.5 yAyAFy=yFy=y
15 13 14 syl FIsomE,EABOrdAOrdBxAyxyAFy=yFy=y
16 15 ralbidva FIsomE,EABOrdAOrdBxAyxyAFy=yyxFy=y
17 isof1o FIsomE,EABF:A1-1 ontoB
18 17 3ad2ant1 FIsomE,EABOrdAOrdBF:A1-1 ontoB
19 18 ad2antrr FIsomE,EABOrdAOrdBxAyxFy=yzFxF:A1-1 ontoB
20 simpll3 FIsomE,EABOrdAOrdBxAyxFy=yzFxOrdB
21 simpr FIsomE,EABOrdAOrdBxAyxFy=yzFxzFx
22 f1of F:A1-1 ontoBF:AB
23 17 22 syl FIsomE,EABF:AB
24 23 3ad2ant1 FIsomE,EABOrdAOrdBF:AB
25 24 ad2antrr FIsomE,EABOrdAOrdBxAyxFy=yzFxF:AB
26 simplrl FIsomE,EABOrdAOrdBxAyxFy=yzFxxA
27 25 26 ffvelcdmd FIsomE,EABOrdAOrdBxAyxFy=yzFxFxB
28 21 27 jca FIsomE,EABOrdAOrdBxAyxFy=yzFxzFxFxB
29 ordtr1 OrdBzFxFxBzB
30 20 28 29 sylc FIsomE,EABOrdAOrdBxAyxFy=yzFxzB
31 f1ocnvfv2 F:A1-1 ontoBzBFF-1z=z
32 19 30 31 syl2anc FIsomE,EABOrdAOrdBxAyxFy=yzFxFF-1z=z
33 32 21 eqeltrd FIsomE,EABOrdAOrdBxAyxFy=yzFxFF-1zFx
34 simpll1 FIsomE,EABOrdAOrdBxAyxFy=yzFxFIsomE,EAB
35 f1ocnv F:A1-1 ontoBF-1:B1-1 ontoA
36 f1of F-1:B1-1 ontoAF-1:BA
37 19 35 36 3syl FIsomE,EABOrdAOrdBxAyxFy=yzFxF-1:BA
38 37 30 ffvelcdmd FIsomE,EABOrdAOrdBxAyxFy=yzFxF-1zA
39 isorel FIsomE,EABF-1zAxAF-1zExFF-1zEFx
40 34 38 26 39 syl12anc FIsomE,EABOrdAOrdBxAyxFy=yzFxF-1zExFF-1zEFx
41 epel F-1zExF-1zx
42 fvex FxV
43 42 epeli FF-1zEFxFF-1zFx
44 40 41 43 3bitr3g FIsomE,EABOrdAOrdBxAyxFy=yzFxF-1zxFF-1zFx
45 33 44 mpbird FIsomE,EABOrdAOrdBxAyxFy=yzFxF-1zx
46 simplrr FIsomE,EABOrdAOrdBxAyxFy=yzFxyxFy=y
47 fveq2 y=F-1zFy=FF-1z
48 id y=F-1zy=F-1z
49 47 48 eqeq12d y=F-1zFy=yFF-1z=F-1z
50 49 rspcv F-1zxyxFy=yFF-1z=F-1z
51 45 46 50 sylc FIsomE,EABOrdAOrdBxAyxFy=yzFxFF-1z=F-1z
52 32 51 eqtr3d FIsomE,EABOrdAOrdBxAyxFy=yzFxz=F-1z
53 52 45 eqeltrd FIsomE,EABOrdAOrdBxAyxFy=yzFxzx
54 simprr FIsomE,EABOrdAOrdBxAyxFy=yyxFy=y
55 fveq2 y=zFy=Fz
56 id y=zy=z
57 55 56 eqeq12d y=zFy=yFz=z
58 57 rspccva yxFy=yzxFz=z
59 54 58 sylan FIsomE,EABOrdAOrdBxAyxFy=yzxFz=z
60 epel zExzx
61 60 biimpri zxzEx
62 61 adantl FIsomE,EABOrdAOrdBxAyxFy=yzxzEx
63 simpll1 FIsomE,EABOrdAOrdBxAyxFy=yzxFIsomE,EAB
64 simpl2 FIsomE,EABOrdAOrdBxAyxFy=yOrdA
65 simprl FIsomE,EABOrdAOrdBxAyxFy=yxA
66 64 65 11 syl2anc FIsomE,EABOrdAOrdBxAyxFy=yxA
67 66 sselda FIsomE,EABOrdAOrdBxAyxFy=yzxzA
68 simplrl FIsomE,EABOrdAOrdBxAyxFy=yzxxA
69 isorel FIsomE,EABzAxAzExFzEFx
70 63 67 68 69 syl12anc FIsomE,EABOrdAOrdBxAyxFy=yzxzExFzEFx
71 62 70 mpbid FIsomE,EABOrdAOrdBxAyxFy=yzxFzEFx
72 42 epeli FzEFxFzFx
73 71 72 sylib FIsomE,EABOrdAOrdBxAyxFy=yzxFzFx
74 59 73 eqeltrrd FIsomE,EABOrdAOrdBxAyxFy=yzxzFx
75 53 74 impbida FIsomE,EABOrdAOrdBxAyxFy=yzFxzx
76 75 eqrdv FIsomE,EABOrdAOrdBxAyxFy=yFx=x
77 76 expr FIsomE,EABOrdAOrdBxAyxFy=yFx=x
78 16 77 sylbid FIsomE,EABOrdAOrdBxAyxyAFy=yFx=x
79 78 ex FIsomE,EABOrdAOrdBxAyxyAFy=yFx=x
80 79 com23 FIsomE,EABOrdAOrdByxyAFy=yxAFx=x
81 80 a2i FIsomE,EABOrdAOrdByxyAFy=yFIsomE,EABOrdAOrdBxAFx=x
82 81 a1i xOnFIsomE,EABOrdAOrdByxyAFy=yFIsomE,EABOrdAOrdBxAFx=x
83 10 82 biimtrid xOnyxFIsomE,EABOrdAOrdByAFy=yFIsomE,EABOrdAOrdBxAFx=x
84 9 83 tfis2 xOnFIsomE,EABOrdAOrdBxAFx=x
85 84 com3l FIsomE,EABOrdAOrdBxAxOnFx=x
86 3 85 mpdd FIsomE,EABOrdAOrdBxAFx=x
87 86 ralrimiv FIsomE,EABOrdAOrdBxAFx=x
88 fveq2 x=zFx=Fz
89 id x=zx=z
90 88 89 eqeq12d x=zFx=xFz=z
91 90 rspccva xAFx=xzAFz=z
92 91 adantll FIsomE,EABOrdAOrdBxAFx=xzAFz=z
93 23 ffvelcdmda FIsomE,EABzAFzB
94 93 3ad2antl1 FIsomE,EABOrdAOrdBzAFzB
95 94 adantlr FIsomE,EABOrdAOrdBxAFx=xzAFzB
96 92 95 eqeltrrd FIsomE,EABOrdAOrdBxAFx=xzAzB
97 96 ex FIsomE,EABOrdAOrdBxAFx=xzAzB
98 simpl1 FIsomE,EABOrdAOrdBxAFx=xFIsomE,EAB
99 f1ofo F:A1-1 ontoBF:AontoB
100 forn F:AontoBranF=B
101 17 99 100 3syl FIsomE,EABranF=B
102 98 101 syl FIsomE,EABOrdAOrdBxAFx=xranF=B
103 102 eleq2d FIsomE,EABOrdAOrdBxAFx=xzranFzB
104 f1ofn F:A1-1 ontoBFFnA
105 17 104 syl FIsomE,EABFFnA
106 105 3ad2ant1 FIsomE,EABOrdAOrdBFFnA
107 106 adantr FIsomE,EABOrdAOrdBxAFx=xFFnA
108 fvelrnb FFnAzranFwAFw=z
109 107 108 syl FIsomE,EABOrdAOrdBxAFx=xzranFwAFw=z
110 103 109 bitr3d FIsomE,EABOrdAOrdBxAFx=xzBwAFw=z
111 fveq2 x=wFx=Fw
112 id x=wx=w
113 111 112 eqeq12d x=wFx=xFw=w
114 113 rspcv wAxAFx=xFw=w
115 114 a1i FIsomE,EABOrdAOrdBwAxAFx=xFw=w
116 simpr Fw=wFw=zFw=z
117 simpl Fw=wFw=zFw=w
118 116 117 eqtr3d Fw=wFw=zz=w
119 118 adantl FIsomE,EABOrdAOrdBwAFw=wFw=zz=w
120 simplr FIsomE,EABOrdAOrdBwAFw=wFw=zwA
121 119 120 eqeltrd FIsomE,EABOrdAOrdBwAFw=wFw=zzA
122 121 exp43 FIsomE,EABOrdAOrdBwAFw=wFw=zzA
123 115 122 syldd FIsomE,EABOrdAOrdBwAxAFx=xFw=zzA
124 123 com23 FIsomE,EABOrdAOrdBxAFx=xwAFw=zzA
125 124 imp FIsomE,EABOrdAOrdBxAFx=xwAFw=zzA
126 125 rexlimdv FIsomE,EABOrdAOrdBxAFx=xwAFw=zzA
127 110 126 sylbid FIsomE,EABOrdAOrdBxAFx=xzBzA
128 97 127 impbid FIsomE,EABOrdAOrdBxAFx=xzAzB
129 128 eqrdv FIsomE,EABOrdAOrdBxAFx=xA=B
130 87 129 mpdan FIsomE,EABOrdAOrdBA=B