Description: The 1-dimensional Lebesgue outer measure agrees with the Lebesgue outer measure on subsets of Real numbers. (Contributed by Glauco Siliprandi, 3-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ovnovollem3.a | |
|
ovnovollem3.b | |
||
ovnovollem3.m | |
||
ovnovollem3.n | |
||
Assertion | ovnovollem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovnovollem3.a | |
|
2 | ovnovollem3.b | |
|
3 | ovnovollem3.m | |
|
4 | ovnovollem3.n | |
|
5 | 1 | snn0d | |
6 | 5 | neneqd | |
7 | 6 | iffalsed | |
8 | snfi | |
|
9 | 8 | a1i | |
10 | reex | |
|
11 | 10 | a1i | |
12 | mapss | |
|
13 | 11 2 12 | syl2anc | |
14 | 9 13 3 | ovnval2 | |
15 | 2 4 | ovolval5 | |
16 | 1 | ad2antrr | |
17 | simplr | |
|
18 | fveq2 | |
|
19 | 18 | opeq2d | |
20 | 19 | sneqd | |
21 | 20 | cbvmptv | |
22 | simprl | |
|
23 | 11 2 | ssexd | |
24 | 23 | adantr | |
25 | 24 | adantr | |
26 | simprr | |
|
27 | 16 17 21 22 25 26 | ovnovollem1 | |
28 | 27 | rexlimdva2 | |
29 | 1 | 3ad2ant1 | |
30 | 23 | 3ad2ant1 | |
31 | simp2 | |
|
32 | simp3l | |
|
33 | fveq2 | |
|
34 | 33 | coeq2d | |
35 | 34 | fveq1d | |
36 | 35 | ixpeq2dv | |
37 | fveq2 | |
|
38 | 37 | cbvixpv | |
39 | 38 | a1i | |
40 | 36 39 | eqtrd | |
41 | 40 | cbviunv | |
42 | 41 | sseq2i | |
43 | 42 | biimpi | |
44 | 32 43 | syl | |
45 | simp3r | |
|
46 | 35 | fveq2d | |
47 | 46 | prodeq2ad | |
48 | 37 | fveq2d | |
49 | 48 | cbvprodv | |
50 | 49 | a1i | |
51 | 47 50 | eqtrd | |
52 | 51 | cbvmptv | |
53 | 52 | fveq2i | |
54 | 53 | eqeq2i | |
55 | 54 | biimpi | |
56 | 45 55 | syl | |
57 | fveq2 | |
|
58 | 57 | fveq1d | |
59 | 58 | cbvmptv | |
60 | 29 30 31 44 56 59 | ovnovollem2 | |
61 | 60 | 3exp | |
62 | 61 | rexlimdv | |
63 | 28 62 | impbid | |
64 | 63 | rabbidv | |
65 | 4 | a1i | |
66 | 3 | a1i | |
67 | 64 65 66 | 3eqtr4d | |
68 | 67 | infeq1d | |
69 | 15 68 | eqtrd | |
70 | 7 14 69 | 3eqtr4d | |