| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovnovollem3.a |
|
| 2 |
|
ovnovollem3.b |
|
| 3 |
|
ovnovollem3.m |
|
| 4 |
|
ovnovollem3.n |
|
| 5 |
1
|
snn0d |
|
| 6 |
5
|
neneqd |
|
| 7 |
6
|
iffalsed |
|
| 8 |
|
snfi |
|
| 9 |
8
|
a1i |
|
| 10 |
|
reex |
|
| 11 |
10
|
a1i |
|
| 12 |
|
mapss |
|
| 13 |
11 2 12
|
syl2anc |
|
| 14 |
9 13 3
|
ovnval2 |
|
| 15 |
2 4
|
ovolval5 |
|
| 16 |
1
|
ad2antrr |
|
| 17 |
|
simplr |
|
| 18 |
|
fveq2 |
|
| 19 |
18
|
opeq2d |
|
| 20 |
19
|
sneqd |
|
| 21 |
20
|
cbvmptv |
|
| 22 |
|
simprl |
|
| 23 |
11 2
|
ssexd |
|
| 24 |
23
|
adantr |
|
| 25 |
24
|
adantr |
|
| 26 |
|
simprr |
|
| 27 |
16 17 21 22 25 26
|
ovnovollem1 |
|
| 28 |
27
|
rexlimdva2 |
|
| 29 |
1
|
3ad2ant1 |
|
| 30 |
23
|
3ad2ant1 |
|
| 31 |
|
simp2 |
|
| 32 |
|
simp3l |
|
| 33 |
|
fveq2 |
|
| 34 |
33
|
coeq2d |
|
| 35 |
34
|
fveq1d |
|
| 36 |
35
|
ixpeq2dv |
|
| 37 |
|
fveq2 |
|
| 38 |
37
|
cbvixpv |
|
| 39 |
38
|
a1i |
|
| 40 |
36 39
|
eqtrd |
|
| 41 |
40
|
cbviunv |
|
| 42 |
41
|
sseq2i |
|
| 43 |
42
|
biimpi |
|
| 44 |
32 43
|
syl |
|
| 45 |
|
simp3r |
|
| 46 |
35
|
fveq2d |
|
| 47 |
46
|
prodeq2ad |
|
| 48 |
37
|
fveq2d |
|
| 49 |
48
|
cbvprodv |
|
| 50 |
49
|
a1i |
|
| 51 |
47 50
|
eqtrd |
|
| 52 |
51
|
cbvmptv |
|
| 53 |
52
|
fveq2i |
|
| 54 |
53
|
eqeq2i |
|
| 55 |
54
|
biimpi |
|
| 56 |
45 55
|
syl |
|
| 57 |
|
fveq2 |
|
| 58 |
57
|
fveq1d |
|
| 59 |
58
|
cbvmptv |
|
| 60 |
29 30 31 44 56 59
|
ovnovollem2 |
|
| 61 |
60
|
3exp |
|
| 62 |
61
|
rexlimdv |
|
| 63 |
28 62
|
impbid |
|
| 64 |
63
|
rabbidv |
|
| 65 |
4
|
a1i |
|
| 66 |
3
|
a1i |
|
| 67 |
64 65 66
|
3eqtr4d |
|
| 68 |
67
|
infeq1d |
|
| 69 |
15 68
|
eqtrd |
|
| 70 |
7 14 69
|
3eqtr4d |
|