Step |
Hyp |
Ref |
Expression |
1 |
|
ovnsubadd.1 |
|
2 |
|
ovnsubadd.2 |
|
3 |
|
fveq2 |
|
4 |
3
|
fveq1d |
|
5 |
4
|
adantl |
|
6 |
2
|
adantr |
|
7 |
|
simpr |
|
8 |
6 7
|
ffvelrnd |
|
9 |
|
elpwi |
|
10 |
8 9
|
syl |
|
11 |
10
|
ralrimiva |
|
12 |
|
iunss |
|
13 |
11 12
|
sylibr |
|
14 |
13
|
adantr |
|
15 |
|
oveq2 |
|
16 |
15
|
adantl |
|
17 |
14 16
|
sseqtrd |
|
18 |
17
|
ovn0val |
|
19 |
5 18
|
eqtrd |
|
20 |
|
nnex |
|
21 |
20
|
a1i |
|
22 |
1
|
adantr |
|
23 |
22 10
|
ovncl |
|
24 |
|
eqid |
|
25 |
23 24
|
fmptd |
|
26 |
21 25
|
sge0ge0 |
|
27 |
26
|
adantr |
|
28 |
19 27
|
eqbrtrd |
|
29 |
1 13
|
ovnxrcl |
|
30 |
29
|
adantr |
|
31 |
21 25
|
sge0xrcl |
|
32 |
31
|
adantr |
|
33 |
1
|
ad2antrr |
|
34 |
|
neqne |
|
35 |
34
|
ad2antlr |
|
36 |
2
|
ad2antrr |
|
37 |
|
simpr |
|
38 |
|
eqid |
|
39 |
|
sseq1 |
|
40 |
39
|
rabbidv |
|
41 |
40
|
cbvmptv |
|
42 |
|
eqid |
|
43 |
|
fveq2 |
|
44 |
43
|
coeq2d |
|
45 |
44
|
fveq1d |
|
46 |
45
|
ixpeq2dv |
|
47 |
|
fveq2 |
|
48 |
47
|
cbvixpv |
|
49 |
46 48
|
eqtrdi |
|
50 |
49
|
cbviunv |
|
51 |
50
|
sseq2i |
|
52 |
51
|
rabbii |
|
53 |
52
|
mpteq2i |
|
54 |
53
|
fveq1i |
|
55 |
|
fveq2 |
|
56 |
54 55
|
eqtrid |
|
57 |
56
|
eleq2d |
|
58 |
|
2fveq3 |
|
59 |
58
|
cbvprodv |
|
60 |
59
|
mpteq2i |
|
61 |
60
|
a1i |
|
62 |
|
fveq2 |
|
63 |
61 62
|
fveq12d |
|
64 |
63
|
cbvmptv |
|
65 |
64
|
fveq2i |
|
66 |
65
|
a1i |
|
67 |
|
fveq2 |
|
68 |
67
|
oveq1d |
|
69 |
66 68
|
breq12d |
|
70 |
57 69
|
anbi12d |
|
71 |
70
|
rabbidva2 |
|
72 |
|
fveq1 |
|
73 |
72
|
fveq2d |
|
74 |
73
|
mpteq2dv |
|
75 |
74
|
fveq2d |
|
76 |
75
|
breq1d |
|
77 |
76
|
cbvrabv |
|
78 |
71 77
|
eqtrdi |
|
79 |
78
|
mpteq2dv |
|
80 |
|
oveq2 |
|
81 |
80
|
breq2d |
|
82 |
81
|
rabbidv |
|
83 |
82
|
cbvmptv |
|
84 |
79 83
|
eqtrdi |
|
85 |
84
|
cbvmptv |
|
86 |
33 35 36 37 38 41 42 85
|
ovnsubaddlem2 |
|
87 |
30 32 86
|
xrlexaddrp |
|
88 |
28 87
|
pm2.61dan |
|