Metamath Proof Explorer


Theorem ovnsubadd

Description: ( voln*X ) is subadditive. Proposition 115D (a)(iv) of Fremlin1 p. 31 . (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses ovnsubadd.1 φ X Fin
ovnsubadd.2 φ A : 𝒫 X
Assertion ovnsubadd φ voln* X n A n sum^ n voln* X A n

Proof

Step Hyp Ref Expression
1 ovnsubadd.1 φ X Fin
2 ovnsubadd.2 φ A : 𝒫 X
3 fveq2 X = voln* X = voln*
4 3 fveq1d X = voln* X n A n = voln* n A n
5 4 adantl φ X = voln* X n A n = voln* n A n
6 2 adantr φ n A : 𝒫 X
7 simpr φ n n
8 6 7 ffvelrnd φ n A n 𝒫 X
9 elpwi A n 𝒫 X A n X
10 8 9 syl φ n A n X
11 10 ralrimiva φ n A n X
12 iunss n A n X n A n X
13 11 12 sylibr φ n A n X
14 13 adantr φ X = n A n X
15 oveq2 X = X =
16 15 adantl φ X = X =
17 14 16 sseqtrd φ X = n A n
18 17 ovn0val φ X = voln* n A n = 0
19 5 18 eqtrd φ X = voln* X n A n = 0
20 nnex V
21 20 a1i φ V
22 1 adantr φ n X Fin
23 22 10 ovncl φ n voln* X A n 0 +∞
24 eqid n voln* X A n = n voln* X A n
25 23 24 fmptd φ n voln* X A n : 0 +∞
26 21 25 sge0ge0 φ 0 sum^ n voln* X A n
27 26 adantr φ X = 0 sum^ n voln* X A n
28 19 27 eqbrtrd φ X = voln* X n A n sum^ n voln* X A n
29 1 13 ovnxrcl φ voln* X n A n *
30 29 adantr φ ¬ X = voln* X n A n *
31 21 25 sge0xrcl φ sum^ n voln* X A n *
32 31 adantr φ ¬ X = sum^ n voln* X A n *
33 1 ad2antrr φ ¬ X = y + X Fin
34 neqne ¬ X = X
35 34 ad2antlr φ ¬ X = y + X
36 2 ad2antrr φ ¬ X = y + A : 𝒫 X
37 simpr φ ¬ X = y + y +
38 eqid a 𝒫 X z * | i 2 X a j k X . i j k z = sum^ j k X vol . i j k = a 𝒫 X z * | i 2 X a j k X . i j k z = sum^ j k X vol . i j k
39 sseq1 b = a b j k X . l j k a j k X . l j k
40 39 rabbidv b = a l 2 X | b j k X . l j k = l 2 X | a j k X . l j k
41 40 cbvmptv b 𝒫 X l 2 X | b j k X . l j k = a 𝒫 X l 2 X | a j k X . l j k
42 eqid h 2 X k X vol . h k = h 2 X k X vol . h k
43 fveq2 o = j l o = l j
44 43 coeq2d o = j . l o = . l j
45 44 fveq1d o = j . l o d = . l j d
46 45 ixpeq2dv o = j d X . l o d = d X . l j d
47 fveq2 d = k . l j d = . l j k
48 47 cbvixpv d X . l j d = k X . l j k
49 46 48 eqtrdi o = j d X . l o d = k X . l j k
50 49 cbviunv o d X . l o d = j k X . l j k
51 50 sseq2i b o d X . l o d b j k X . l j k
52 51 rabbii l 2 X | b o d X . l o d = l 2 X | b j k X . l j k
53 52 mpteq2i b 𝒫 X l 2 X | b o d X . l o d = b 𝒫 X l 2 X | b j k X . l j k
54 53 fveq1i b 𝒫 X l 2 X | b o d X . l o d d = b 𝒫 X l 2 X | b j k X . l j k d
55 fveq2 d = a b 𝒫 X l 2 X | b j k X . l j k d = b 𝒫 X l 2 X | b j k X . l j k a
56 54 55 eqtrid d = a b 𝒫 X l 2 X | b o d X . l o d d = b 𝒫 X l 2 X | b j k X . l j k a
57 56 eleq2d d = a m b 𝒫 X l 2 X | b o d X . l o d d m b 𝒫 X l 2 X | b j k X . l j k a
58 2fveq3 d = k vol . h d = vol . h k
59 58 cbvprodv d X vol . h d = k X vol . h k
60 59 mpteq2i h 2 X d X vol . h d = h 2 X k X vol . h k
61 60 a1i o = j h 2 X d X vol . h d = h 2 X k X vol . h k
62 fveq2 o = j m o = m j
63 61 62 fveq12d o = j h 2 X d X vol . h d m o = h 2 X k X vol . h k m j
64 63 cbvmptv o h 2 X d X vol . h d m o = j h 2 X k X vol . h k m j
65 64 fveq2i sum^ o h 2 X d X vol . h d m o = sum^ j h 2 X k X vol . h k m j
66 65 a1i d = a sum^ o h 2 X d X vol . h d m o = sum^ j h 2 X k X vol . h k m j
67 fveq2 d = a voln* X d = voln* X a
68 67 oveq1d d = a voln* X d + 𝑒 f = voln* X a + 𝑒 f
69 66 68 breq12d d = a sum^ o h 2 X d X vol . h d m o voln* X d + 𝑒 f sum^ j h 2 X k X vol . h k m j voln* X a + 𝑒 f
70 57 69 anbi12d d = a m b 𝒫 X l 2 X | b o d X . l o d d sum^ o h 2 X d X vol . h d m o voln* X d + 𝑒 f m b 𝒫 X l 2 X | b j k X . l j k a sum^ j h 2 X k X vol . h k m j voln* X a + 𝑒 f
71 70 rabbidva2 d = a m b 𝒫 X l 2 X | b o d X . l o d d | sum^ o h 2 X d X vol . h d m o voln* X d + 𝑒 f = m b 𝒫 X l 2 X | b j k X . l j k a | sum^ j h 2 X k X vol . h k m j voln* X a + 𝑒 f
72 fveq1 m = i m j = i j
73 72 fveq2d m = i h 2 X k X vol . h k m j = h 2 X k X vol . h k i j
74 73 mpteq2dv m = i j h 2 X k X vol . h k m j = j h 2 X k X vol . h k i j
75 74 fveq2d m = i sum^ j h 2 X k X vol . h k m j = sum^ j h 2 X k X vol . h k i j
76 75 breq1d m = i sum^ j h 2 X k X vol . h k m j voln* X a + 𝑒 f sum^ j h 2 X k X vol . h k i j voln* X a + 𝑒 f
77 76 cbvrabv m b 𝒫 X l 2 X | b j k X . l j k a | sum^ j h 2 X k X vol . h k m j voln* X a + 𝑒 f = i b 𝒫 X l 2 X | b j k X . l j k a | sum^ j h 2 X k X vol . h k i j voln* X a + 𝑒 f
78 71 77 eqtrdi d = a m b 𝒫 X l 2 X | b o d X . l o d d | sum^ o h 2 X d X vol . h d m o voln* X d + 𝑒 f = i b 𝒫 X l 2 X | b j k X . l j k a | sum^ j h 2 X k X vol . h k i j voln* X a + 𝑒 f
79 78 mpteq2dv d = a f + m b 𝒫 X l 2 X | b o d X . l o d d | sum^ o h 2 X d X vol . h d m o voln* X d + 𝑒 f = f + i b 𝒫 X l 2 X | b j k X . l j k a | sum^ j h 2 X k X vol . h k i j voln* X a + 𝑒 f
80 oveq2 f = e voln* X a + 𝑒 f = voln* X a + 𝑒 e
81 80 breq2d f = e sum^ j h 2 X k X vol . h k i j voln* X a + 𝑒 f sum^ j h 2 X k X vol . h k i j voln* X a + 𝑒 e
82 81 rabbidv f = e i b 𝒫 X l 2 X | b j k X . l j k a | sum^ j h 2 X k X vol . h k i j voln* X a + 𝑒 f = i b 𝒫 X l 2 X | b j k X . l j k a | sum^ j h 2 X k X vol . h k i j voln* X a + 𝑒 e
83 82 cbvmptv f + i b 𝒫 X l 2 X | b j k X . l j k a | sum^ j h 2 X k X vol . h k i j voln* X a + 𝑒 f = e + i b 𝒫 X l 2 X | b j k X . l j k a | sum^ j h 2 X k X vol . h k i j voln* X a + 𝑒 e
84 79 83 eqtrdi d = a f + m b 𝒫 X l 2 X | b o d X . l o d d | sum^ o h 2 X d X vol . h d m o voln* X d + 𝑒 f = e + i b 𝒫 X l 2 X | b j k X . l j k a | sum^ j h 2 X k X vol . h k i j voln* X a + 𝑒 e
85 84 cbvmptv d 𝒫 X f + m b 𝒫 X l 2 X | b o d X . l o d d | sum^ o h 2 X d X vol . h d m o voln* X d + 𝑒 f = a 𝒫 X e + i b 𝒫 X l 2 X | b j k X . l j k a | sum^ j h 2 X k X vol . h k i j voln* X a + 𝑒 e
86 33 35 36 37 38 41 42 85 ovnsubaddlem2 φ ¬ X = y + voln* X n A n sum^ n voln* X A n + 𝑒 y
87 30 32 86 xrlexaddrp φ ¬ X = voln* X n A n sum^ n voln* X A n
88 28 87 pm2.61dan φ voln* X n A n sum^ n voln* X A n