| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brdom2 |
|
| 2 |
|
nfv |
|
| 3 |
|
nfv |
|
| 4 |
|
isfinite2 |
|
| 5 |
|
isfinite4 |
|
| 6 |
4 5
|
sylib |
|
| 7 |
6
|
adantr |
|
| 8 |
|
bren |
|
| 9 |
7 8
|
sylib |
|
| 10 |
9
|
3adant3 |
|
| 11 |
|
f1of |
|
| 12 |
11
|
adantl |
|
| 13 |
|
fconstmpt |
|
| 14 |
13
|
eqcomi |
|
| 15 |
|
simplr |
|
| 16 |
|
fconst2g |
|
| 17 |
15 16
|
syl |
|
| 18 |
14 17
|
mpbiri |
|
| 19 |
|
disjdif |
|
| 20 |
19
|
a1i |
|
| 21 |
|
fun |
|
| 22 |
12 18 20 21
|
syl21anc |
|
| 23 |
|
fz1ssnn |
|
| 24 |
|
undif |
|
| 25 |
23 24
|
mpbi |
|
| 26 |
25
|
feq2i |
|
| 27 |
22 26
|
sylib |
|
| 28 |
27
|
3adantl3 |
|
| 29 |
|
ssid |
|
| 30 |
|
simpr |
|
| 31 |
|
f1ofo |
|
| 32 |
|
forn |
|
| 33 |
30 31 32
|
3syl |
|
| 34 |
29 33
|
sseqtrrid |
|
| 35 |
34
|
orcd |
|
| 36 |
|
ssun |
|
| 37 |
35 36
|
syl |
|
| 38 |
|
rnun |
|
| 39 |
37 38
|
sseqtrrdi |
|
| 40 |
39
|
3adantl3 |
|
| 41 |
|
dff1o3 |
|
| 42 |
41
|
simprbi |
|
| 43 |
42
|
adantl |
|
| 44 |
|
cnvun |
|
| 45 |
44
|
reseq1i |
|
| 46 |
|
resundir |
|
| 47 |
45 46
|
eqtri |
|
| 48 |
|
dff1o4 |
|
| 49 |
48
|
simprbi |
|
| 50 |
|
fnresdm |
|
| 51 |
49 50
|
syl |
|
| 52 |
51
|
adantl |
|
| 53 |
|
simpl3 |
|
| 54 |
14
|
cnveqi |
|
| 55 |
|
cnvxp |
|
| 56 |
54 55
|
eqtri |
|
| 57 |
56
|
reseq1i |
|
| 58 |
|
incom |
|
| 59 |
|
disjsn |
|
| 60 |
59
|
biimpri |
|
| 61 |
58 60
|
eqtr3id |
|
| 62 |
|
xpdisjres |
|
| 63 |
61 62
|
syl |
|
| 64 |
57 63
|
eqtrid |
|
| 65 |
53 64
|
syl |
|
| 66 |
52 65
|
uneq12d |
|
| 67 |
|
un0 |
|
| 68 |
66 67
|
eqtrdi |
|
| 69 |
47 68
|
eqtrid |
|
| 70 |
69
|
funeqd |
|
| 71 |
43 70
|
mpbird |
|
| 72 |
|
vex |
|
| 73 |
|
nnex |
|
| 74 |
|
difexg |
|
| 75 |
73 74
|
ax-mp |
|
| 76 |
75
|
mptex |
|
| 77 |
72 76
|
unex |
|
| 78 |
|
feq1 |
|
| 79 |
|
rneq |
|
| 80 |
79
|
sseq2d |
|
| 81 |
|
cnveq |
|
| 82 |
|
eqidd |
|
| 83 |
81 82
|
reseq12d |
|
| 84 |
83
|
funeqd |
|
| 85 |
78 80 84
|
3anbi123d |
|
| 86 |
77 85
|
spcev |
|
| 87 |
28 40 71 86
|
syl3anc |
|
| 88 |
87
|
ex |
|
| 89 |
2 3 10 88
|
exlimimdd |
|
| 90 |
89
|
3expia |
|
| 91 |
|
nnenom |
|
| 92 |
|
simpl |
|
| 93 |
92
|
ensymd |
|
| 94 |
|
entr |
|
| 95 |
91 93 94
|
sylancr |
|
| 96 |
|
bren |
|
| 97 |
95 96
|
sylib |
|
| 98 |
|
nfv |
|
| 99 |
|
simpr |
|
| 100 |
|
f1of |
|
| 101 |
|
ssun1 |
|
| 102 |
|
fss |
|
| 103 |
101 102
|
mpan2 |
|
| 104 |
99 100 103
|
3syl |
|
| 105 |
|
f1ofo |
|
| 106 |
|
forn |
|
| 107 |
99 105 106
|
3syl |
|
| 108 |
29 107
|
sseqtrrid |
|
| 109 |
|
f1ocnv |
|
| 110 |
|
f1of1 |
|
| 111 |
99 109 110
|
3syl |
|
| 112 |
|
f1ores |
|
| 113 |
29 112
|
mpan2 |
|
| 114 |
|
f1ofun |
|
| 115 |
111 113 114
|
3syl |
|
| 116 |
104 108 115
|
3jca |
|
| 117 |
116
|
ex |
|
| 118 |
98 117
|
eximd |
|
| 119 |
97 118
|
mpd |
|
| 120 |
119
|
a1d |
|
| 121 |
90 120
|
jaoian |
|
| 122 |
121
|
3impia |
|
| 123 |
1 122
|
syl3an1b |
|