Metamath Proof Explorer


Theorem padct

Description: Index a countable set with integers and pad with Z . (Contributed by Thierry Arnoux, 1-Jun-2020)

Ref Expression
Assertion padct AωZV¬ZAff:AZAranfFunf-1A

Proof

Step Hyp Ref Expression
1 brdom2 AωAωAω
2 nfv gAωZV¬ZA
3 nfv gff:AZAranfFunf-1A
4 isfinite2 AωAFin
5 isfinite4 AFin1AA
6 4 5 sylib Aω1AA
7 6 adantr AωZV1AA
8 bren 1AAgg:1A1-1 ontoA
9 7 8 sylib AωZVgg:1A1-1 ontoA
10 9 3adant3 AωZV¬ZAgg:1A1-1 ontoA
11 f1of g:1A1-1 ontoAg:1AA
12 11 adantl AωZVg:1A1-1 ontoAg:1AA
13 fconstmpt 1A×Z=x1AZ
14 13 eqcomi x1AZ=1A×Z
15 simplr AωZVg:1A1-1 ontoAZV
16 fconst2g ZVx1AZ:1AZx1AZ=1A×Z
17 15 16 syl AωZVg:1A1-1 ontoAx1AZ:1AZx1AZ=1A×Z
18 14 17 mpbiri AωZVg:1A1-1 ontoAx1AZ:1AZ
19 disjdif 1A1A=
20 19 a1i AωZVg:1A1-1 ontoA1A1A=
21 fun g:1AAx1AZ:1AZ1A1A=gx1AZ:1A1AAZ
22 12 18 20 21 syl21anc AωZVg:1A1-1 ontoAgx1AZ:1A1AAZ
23 fz1ssnn 1A
24 undif 1A1A1A=
25 23 24 mpbi 1A1A=
26 25 feq2i gx1AZ:1A1AAZgx1AZ:AZ
27 22 26 sylib AωZVg:1A1-1 ontoAgx1AZ:AZ
28 27 3adantl3 AωZV¬ZAg:1A1-1 ontoAgx1AZ:AZ
29 ssid AA
30 simpr AωZVg:1A1-1 ontoAg:1A1-1 ontoA
31 f1ofo g:1A1-1 ontoAg:1AontoA
32 forn g:1AontoArang=A
33 30 31 32 3syl AωZVg:1A1-1 ontoArang=A
34 29 33 sseqtrrid AωZVg:1A1-1 ontoAArang
35 34 orcd AωZVg:1A1-1 ontoAArangAranx1AZ
36 ssun ArangAranx1AZArangranx1AZ
37 35 36 syl AωZVg:1A1-1 ontoAArangranx1AZ
38 rnun rangx1AZ=rangranx1AZ
39 37 38 sseqtrrdi AωZVg:1A1-1 ontoAArangx1AZ
40 39 3adantl3 AωZV¬ZAg:1A1-1 ontoAArangx1AZ
41 dff1o3 g:1A1-1 ontoAg:1AontoAFung-1
42 41 simprbi g:1A1-1 ontoAFung-1
43 42 adantl AωZV¬ZAg:1A1-1 ontoAFung-1
44 cnvun gx1AZ-1=g-1x1AZ-1
45 44 reseq1i gx1AZ-1A=g-1x1AZ-1A
46 resundir g-1x1AZ-1A=g-1Ax1AZ-1A
47 45 46 eqtri gx1AZ-1A=g-1Ax1AZ-1A
48 dff1o4 g:1A1-1 ontoAgFn1Ag-1FnA
49 48 simprbi g:1A1-1 ontoAg-1FnA
50 fnresdm g-1FnAg-1A=g-1
51 49 50 syl g:1A1-1 ontoAg-1A=g-1
52 51 adantl AωZV¬ZAg:1A1-1 ontoAg-1A=g-1
53 simpl3 AωZV¬ZAg:1A1-1 ontoA¬ZA
54 14 cnveqi x1AZ-1=1A×Z-1
55 cnvxp 1A×Z-1=Z×1A
56 54 55 eqtri x1AZ-1=Z×1A
57 56 reseq1i x1AZ-1A=Z×1AA
58 incom AZ=ZA
59 disjsn AZ=¬ZA
60 59 biimpri ¬ZAAZ=
61 58 60 eqtr3id ¬ZAZA=
62 xpdisjres ZA=Z×1AA=
63 61 62 syl ¬ZAZ×1AA=
64 57 63 eqtrid ¬ZAx1AZ-1A=
65 53 64 syl AωZV¬ZAg:1A1-1 ontoAx1AZ-1A=
66 52 65 uneq12d AωZV¬ZAg:1A1-1 ontoAg-1Ax1AZ-1A=g-1
67 un0 g-1=g-1
68 66 67 eqtrdi AωZV¬ZAg:1A1-1 ontoAg-1Ax1AZ-1A=g-1
69 47 68 eqtrid AωZV¬ZAg:1A1-1 ontoAgx1AZ-1A=g-1
70 69 funeqd AωZV¬ZAg:1A1-1 ontoAFungx1AZ-1AFung-1
71 43 70 mpbird AωZV¬ZAg:1A1-1 ontoAFungx1AZ-1A
72 vex gV
73 nnex V
74 difexg V1AV
75 73 74 ax-mp 1AV
76 75 mptex x1AZV
77 72 76 unex gx1AZV
78 feq1 f=gx1AZf:AZgx1AZ:AZ
79 rneq f=gx1AZranf=rangx1AZ
80 79 sseq2d f=gx1AZAranfArangx1AZ
81 cnveq f=gx1AZf-1=gx1AZ-1
82 eqidd f=gx1AZA=A
83 81 82 reseq12d f=gx1AZf-1A=gx1AZ-1A
84 83 funeqd f=gx1AZFunf-1AFungx1AZ-1A
85 78 80 84 3anbi123d f=gx1AZf:AZAranfFunf-1Agx1AZ:AZArangx1AZFungx1AZ-1A
86 77 85 spcev gx1AZ:AZArangx1AZFungx1AZ-1Aff:AZAranfFunf-1A
87 28 40 71 86 syl3anc AωZV¬ZAg:1A1-1 ontoAff:AZAranfFunf-1A
88 87 ex AωZV¬ZAg:1A1-1 ontoAff:AZAranfFunf-1A
89 2 3 10 88 exlimimdd AωZV¬ZAff:AZAranfFunf-1A
90 89 3expia AωZV¬ZAff:AZAranfFunf-1A
91 nnenom ω
92 simpl AωZVAω
93 92 ensymd AωZVωA
94 entr ωωAA
95 91 93 94 sylancr AωZVA
96 bren Aff:1-1 ontoA
97 95 96 sylib AωZVff:1-1 ontoA
98 nfv fAωZV
99 simpr AωZVf:1-1 ontoAf:1-1 ontoA
100 f1of f:1-1 ontoAf:A
101 ssun1 AAZ
102 fss f:AAAZf:AZ
103 101 102 mpan2 f:Af:AZ
104 99 100 103 3syl AωZVf:1-1 ontoAf:AZ
105 f1ofo f:1-1 ontoAf:ontoA
106 forn f:ontoAranf=A
107 99 105 106 3syl AωZVf:1-1 ontoAranf=A
108 29 107 sseqtrrid AωZVf:1-1 ontoAAranf
109 f1ocnv f:1-1 ontoAf-1:A1-1 onto
110 f1of1 f-1:A1-1 ontof-1:A1-1
111 99 109 110 3syl AωZVf:1-1 ontoAf-1:A1-1
112 f1ores f-1:A1-1AAf-1A:A1-1 ontof-1A
113 29 112 mpan2 f-1:A1-1f-1A:A1-1 ontof-1A
114 f1ofun f-1A:A1-1 ontof-1AFunf-1A
115 111 113 114 3syl AωZVf:1-1 ontoAFunf-1A
116 104 108 115 3jca AωZVf:1-1 ontoAf:AZAranfFunf-1A
117 116 ex AωZVf:1-1 ontoAf:AZAranfFunf-1A
118 98 117 eximd AωZVff:1-1 ontoAff:AZAranfFunf-1A
119 97 118 mpd AωZVff:AZAranfFunf-1A
120 119 a1d AωZV¬ZAff:AZAranfFunf-1A
121 90 120 jaoian AωAωZV¬ZAff:AZAranfFunf-1A
122 121 3impia AωAωZV¬ZAff:AZAranfFunf-1A
123 1 122 syl3an1b AωZV¬ZAff:AZAranfFunf-1A