Step |
Hyp |
Ref |
Expression |
1 |
|
brdom2 |
|
2 |
|
nfv |
|
3 |
|
nfv |
|
4 |
|
isfinite2 |
|
5 |
|
isfinite4 |
|
6 |
4 5
|
sylib |
|
7 |
6
|
adantr |
|
8 |
|
bren |
|
9 |
7 8
|
sylib |
|
10 |
9
|
3adant3 |
|
11 |
|
f1of |
|
12 |
11
|
adantl |
|
13 |
|
fconstmpt |
|
14 |
13
|
eqcomi |
|
15 |
|
simplr |
|
16 |
|
fconst2g |
|
17 |
15 16
|
syl |
|
18 |
14 17
|
mpbiri |
|
19 |
|
disjdif |
|
20 |
19
|
a1i |
|
21 |
|
fun |
|
22 |
12 18 20 21
|
syl21anc |
|
23 |
|
fz1ssnn |
|
24 |
|
undif |
|
25 |
23 24
|
mpbi |
|
26 |
25
|
feq2i |
|
27 |
22 26
|
sylib |
|
28 |
27
|
3adantl3 |
|
29 |
|
ssid |
|
30 |
|
simpr |
|
31 |
|
f1ofo |
|
32 |
|
forn |
|
33 |
30 31 32
|
3syl |
|
34 |
29 33
|
sseqtrrid |
|
35 |
34
|
orcd |
|
36 |
|
ssun |
|
37 |
35 36
|
syl |
|
38 |
|
rnun |
|
39 |
37 38
|
sseqtrrdi |
|
40 |
39
|
3adantl3 |
|
41 |
|
dff1o3 |
|
42 |
41
|
simprbi |
|
43 |
42
|
adantl |
|
44 |
|
cnvun |
|
45 |
44
|
reseq1i |
|
46 |
|
resundir |
|
47 |
45 46
|
eqtri |
|
48 |
|
dff1o4 |
|
49 |
48
|
simprbi |
|
50 |
|
fnresdm |
|
51 |
49 50
|
syl |
|
52 |
51
|
adantl |
|
53 |
|
simpl3 |
|
54 |
14
|
cnveqi |
|
55 |
|
cnvxp |
|
56 |
54 55
|
eqtri |
|
57 |
56
|
reseq1i |
|
58 |
|
incom |
|
59 |
|
disjsn |
|
60 |
59
|
biimpri |
|
61 |
58 60
|
eqtr3id |
|
62 |
|
xpdisjres |
|
63 |
61 62
|
syl |
|
64 |
57 63
|
syl5eq |
|
65 |
53 64
|
syl |
|
66 |
52 65
|
uneq12d |
|
67 |
|
un0 |
|
68 |
66 67
|
eqtrdi |
|
69 |
47 68
|
syl5eq |
|
70 |
69
|
funeqd |
|
71 |
43 70
|
mpbird |
|
72 |
|
vex |
|
73 |
|
nnex |
|
74 |
|
difexg |
|
75 |
73 74
|
ax-mp |
|
76 |
75
|
mptex |
|
77 |
72 76
|
unex |
|
78 |
|
feq1 |
|
79 |
|
rneq |
|
80 |
79
|
sseq2d |
|
81 |
|
cnveq |
|
82 |
|
eqidd |
|
83 |
81 82
|
reseq12d |
|
84 |
83
|
funeqd |
|
85 |
78 80 84
|
3anbi123d |
|
86 |
77 85
|
spcev |
|
87 |
28 40 71 86
|
syl3anc |
|
88 |
87
|
ex |
|
89 |
2 3 10 88
|
exlimimdd |
|
90 |
89
|
3expia |
|
91 |
|
nnenom |
|
92 |
|
simpl |
|
93 |
92
|
ensymd |
|
94 |
|
entr |
|
95 |
91 93 94
|
sylancr |
|
96 |
|
bren |
|
97 |
95 96
|
sylib |
|
98 |
|
nfv |
|
99 |
|
simpr |
|
100 |
|
f1of |
|
101 |
|
ssun1 |
|
102 |
|
fss |
|
103 |
101 102
|
mpan2 |
|
104 |
99 100 103
|
3syl |
|
105 |
|
f1ofo |
|
106 |
|
forn |
|
107 |
99 105 106
|
3syl |
|
108 |
29 107
|
sseqtrrid |
|
109 |
|
f1ocnv |
|
110 |
|
f1of1 |
|
111 |
99 109 110
|
3syl |
|
112 |
|
f1ores |
|
113 |
29 112
|
mpan2 |
|
114 |
|
f1ofun |
|
115 |
111 113 114
|
3syl |
|
116 |
104 108 115
|
3jca |
|
117 |
116
|
ex |
|
118 |
98 117
|
eximd |
|
119 |
97 118
|
mpd |
|
120 |
119
|
a1d |
|
121 |
90 120
|
jaoian |
|
122 |
121
|
3impia |
|
123 |
1 122
|
syl3an1b |
|