| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzfi |
|
| 2 |
|
xpfi |
|
| 3 |
1 1 2
|
mp2an |
|
| 4 |
|
isfinite |
|
| 5 |
3 4
|
mpbi |
|
| 6 |
|
nnenom |
|
| 7 |
6
|
ensymi |
|
| 8 |
|
sdomentr |
|
| 9 |
5 7 8
|
mp2an |
|
| 10 |
|
ensym |
|
| 11 |
10
|
ad2antll |
|
| 12 |
|
sdomentr |
|
| 13 |
9 11 12
|
sylancr |
|
| 14 |
|
opabssxp |
|
| 15 |
14
|
sseli |
|
| 16 |
|
simprrl |
|
| 17 |
16
|
nnzd |
|
| 18 |
|
simpllr |
|
| 19 |
|
simplr |
|
| 20 |
|
nnabscl |
|
| 21 |
18 19 20
|
syl2anc |
|
| 22 |
|
zmodfz |
|
| 23 |
17 21 22
|
syl2anc |
|
| 24 |
|
simprrr |
|
| 25 |
24
|
nnzd |
|
| 26 |
|
zmodfz |
|
| 27 |
25 21 26
|
syl2anc |
|
| 28 |
23 27
|
jca |
|
| 29 |
28
|
ex |
|
| 30 |
|
elxp7 |
|
| 31 |
|
opelxp |
|
| 32 |
29 30 31
|
3imtr4g |
|
| 33 |
15 32
|
syl5 |
|
| 34 |
33
|
imp |
|
| 35 |
34
|
adantlrr |
|
| 36 |
|
fveq2 |
|
| 37 |
36
|
oveq1d |
|
| 38 |
|
fveq2 |
|
| 39 |
38
|
oveq1d |
|
| 40 |
37 39
|
opeq12d |
|
| 41 |
13 35 40
|
fphpd |
|
| 42 |
|
eleq1w |
|
| 43 |
|
eleq1w |
|
| 44 |
42 43
|
bi2anan9 |
|
| 45 |
|
oveq1 |
|
| 46 |
|
oveq1 |
|
| 47 |
46
|
oveq2d |
|
| 48 |
45 47
|
oveqan12d |
|
| 49 |
48
|
eqeq1d |
|
| 50 |
44 49
|
anbi12d |
|
| 51 |
50
|
cbvopabv |
|
| 52 |
51
|
eleq2i |
|
| 53 |
52
|
biimpi |
|
| 54 |
|
elopab |
|
| 55 |
|
elopab |
|
| 56 |
|
simp3ll |
|
| 57 |
56
|
3expb |
|
| 58 |
57
|
3ad2ant1 |
|
| 59 |
|
simp3lr |
|
| 60 |
59
|
3expb |
|
| 61 |
60
|
3ad2ant1 |
|
| 62 |
|
simp1lr |
|
| 63 |
62
|
3adant1r |
|
| 64 |
|
simp-4l |
|
| 65 |
64
|
3ad2ant1 |
|
| 66 |
|
simp-4r |
|
| 67 |
66
|
3ad2ant1 |
|
| 68 |
|
simp2ll |
|
| 69 |
68
|
3adant2l |
|
| 70 |
|
simp2lr |
|
| 71 |
70
|
3adant2l |
|
| 72 |
|
simp2l |
|
| 73 |
|
simp1rl |
|
| 74 |
|
simp3l |
|
| 75 |
|
simp3 |
|
| 76 |
|
simp2 |
|
| 77 |
|
simp1 |
|
| 78 |
75 76 77
|
3netr3d |
|
| 79 |
|
vex |
|
| 80 |
|
vex |
|
| 81 |
79 80
|
opth |
|
| 82 |
81
|
necon3abii |
|
| 83 |
78 82
|
sylib |
|
| 84 |
72 73 74 83
|
syl3anc |
|
| 85 |
|
simp1lr |
|
| 86 |
|
simp1rr |
|
| 87 |
86
|
3adant1l |
|
| 88 |
|
simp2rr |
|
| 89 |
|
simp3r |
|
| 90 |
|
simp3 |
|
| 91 |
|
ovex |
|
| 92 |
|
ovex |
|
| 93 |
91 92
|
opth |
|
| 94 |
90 93
|
sylib |
|
| 95 |
|
simprl |
|
| 96 |
|
simpll |
|
| 97 |
96
|
fveq2d |
|
| 98 |
79 80
|
op1st |
|
| 99 |
97 98
|
eqtrdi |
|
| 100 |
99
|
oveq1d |
|
| 101 |
|
simplr |
|
| 102 |
101
|
fveq2d |
|
| 103 |
|
vex |
|
| 104 |
|
vex |
|
| 105 |
103 104
|
op1st |
|
| 106 |
102 105
|
eqtrdi |
|
| 107 |
106
|
oveq1d |
|
| 108 |
95 100 107
|
3eqtr3d |
|
| 109 |
|
simprr |
|
| 110 |
96
|
fveq2d |
|
| 111 |
79 80
|
op2nd |
|
| 112 |
110 111
|
eqtrdi |
|
| 113 |
112
|
oveq1d |
|
| 114 |
101
|
fveq2d |
|
| 115 |
103 104
|
op2nd |
|
| 116 |
114 115
|
eqtrdi |
|
| 117 |
116
|
oveq1d |
|
| 118 |
109 113 117
|
3eqtr3d |
|
| 119 |
108 118
|
jca |
|
| 120 |
119
|
ex |
|
| 121 |
120
|
3adant3 |
|
| 122 |
94 121
|
mpd |
|
| 123 |
73 72 89 122
|
syl3anc |
|
| 124 |
123
|
simpld |
|
| 125 |
123
|
simprd |
|
| 126 |
58 61 63 65 67 69 71 84 85 87 88 124 125
|
pellexlem6 |
|
| 127 |
126
|
3exp |
|
| 128 |
127
|
exlimdvv |
|
| 129 |
55 128
|
biimtrid |
|
| 130 |
129
|
ex |
|
| 131 |
130
|
exlimdvv |
|
| 132 |
54 131
|
biimtrid |
|
| 133 |
132
|
impd |
|
| 134 |
53 133
|
sylan2i |
|
| 135 |
134
|
rexlimdvv |
|
| 136 |
135
|
imp |
|
| 137 |
136
|
adantlrr |
|
| 138 |
41 137
|
mpdan |
|
| 139 |
|
pellexlem5 |
|
| 140 |
138 139
|
r19.29a |
|