Metamath Proof Explorer


Theorem pellex

Description: Every Pell equation has a nontrivial solution. Theorem 62 in vandenDries p. 43. (Contributed by Stefan O'Rear, 19-Oct-2014)

Ref Expression
Assertion pellex D¬Dxyx2Dy2=1

Proof

Step Hyp Ref Expression
1 fzfi 0a1Fin
2 xpfi 0a1Fin0a1Fin0a1×0a1Fin
3 1 1 2 mp2an 0a1×0a1Fin
4 isfinite 0a1×0a1Fin0a1×0a1ω
5 3 4 mpbi 0a1×0a1ω
6 nnenom ω
7 6 ensymi ω
8 sdomentr 0a1×0a1ωω0a1×0a1
9 5 7 8 mp2an 0a1×0a1
10 ensym bc|bcb2Dc2=abc|bcb2Dc2=a
11 10 ad2antll D¬Daa0bc|bcb2Dc2=abc|bcb2Dc2=a
12 sdomentr 0a1×0a1bc|bcb2Dc2=a0a1×0a1bc|bcb2Dc2=a
13 9 11 12 sylancr D¬Daa0bc|bcb2Dc2=a0a1×0a1bc|bcb2Dc2=a
14 opabssxp bc|bcb2Dc2=a×
15 14 sseli dbc|bcb2Dc2=ad×
16 simprrl D¬Daa0dV×V1std2ndd1std
17 16 nnzd D¬Daa0dV×V1std2ndd1std
18 simpllr D¬Daa0dV×V1std2ndda
19 simplr D¬Daa0dV×V1std2ndda0
20 nnabscl aa0a
21 18 19 20 syl2anc D¬Daa0dV×V1std2ndda
22 zmodfz 1stda1stdmoda0a1
23 17 21 22 syl2anc D¬Daa0dV×V1std2ndd1stdmoda0a1
24 simprrr D¬Daa0dV×V1std2ndd2ndd
25 24 nnzd D¬Daa0dV×V1std2ndd2ndd
26 zmodfz 2ndda2nddmoda0a1
27 25 21 26 syl2anc D¬Daa0dV×V1std2ndd2nddmoda0a1
28 23 27 jca D¬Daa0dV×V1std2ndd1stdmoda0a12nddmoda0a1
29 28 ex D¬Daa0dV×V1std2ndd1stdmoda0a12nddmoda0a1
30 elxp7 d×dV×V1std2ndd
31 opelxp 1stdmoda2nddmoda0a1×0a11stdmoda0a12nddmoda0a1
32 29 30 31 3imtr4g D¬Daa0d×1stdmoda2nddmoda0a1×0a1
33 15 32 syl5 D¬Daa0dbc|bcb2Dc2=a1stdmoda2nddmoda0a1×0a1
34 33 imp D¬Daa0dbc|bcb2Dc2=a1stdmoda2nddmoda0a1×0a1
35 34 adantlrr D¬Daa0bc|bcb2Dc2=adbc|bcb2Dc2=a1stdmoda2nddmoda0a1×0a1
36 fveq2 d=e1std=1ste
37 36 oveq1d d=e1stdmoda=1stemoda
38 fveq2 d=e2ndd=2nde
39 38 oveq1d d=e2nddmoda=2ndemoda
40 37 39 opeq12d d=e1stdmoda2nddmoda=1stemoda2ndemoda
41 13 35 40 fphpd D¬Daa0bc|bcb2Dc2=adbc|bcb2Dc2=aebc|bcb2Dc2=ade1stdmoda2nddmoda=1stemoda2ndemoda
42 eleq1w b=fbf
43 eleq1w c=gcg
44 42 43 bi2anan9 b=fc=gbcfg
45 oveq1 b=fb2=f2
46 oveq1 c=gc2=g2
47 46 oveq2d c=gDc2=Dg2
48 45 47 oveqan12d b=fc=gb2Dc2=f2Dg2
49 48 eqeq1d b=fc=gb2Dc2=af2Dg2=a
50 44 49 anbi12d b=fc=gbcb2Dc2=afgf2Dg2=a
51 50 cbvopabv bc|bcb2Dc2=a=fg|fgf2Dg2=a
52 51 eleq2i ebc|bcb2Dc2=aefg|fgf2Dg2=a
53 52 biimpi ebc|bcb2Dc2=aefg|fgf2Dg2=a
54 elopab dbc|bcb2Dc2=abcd=bcbcb2Dc2=a
55 elopab efg|fgf2Dg2=afge=fgfgf2Dg2=a
56 simp3ll D¬Daa0d=bcbcb2Dc2=ab
57 56 3expb D¬Daa0d=bcbcb2Dc2=ab
58 57 3ad2ant1 D¬Daa0d=bcbcb2Dc2=ae=fgfgf2Dg2=ade1stdmoda2nddmoda=1stemoda2ndemodab
59 simp3lr D¬Daa0d=bcbcb2Dc2=ac
60 59 3expb D¬Daa0d=bcbcb2Dc2=ac
61 60 3ad2ant1 D¬Daa0d=bcbcb2Dc2=ae=fgfgf2Dg2=ade1stdmoda2nddmoda=1stemoda2ndemodac
62 simp1lr D¬Daa0e=fgfgf2Dg2=ade1stdmoda2nddmoda=1stemoda2ndemodaa
63 62 3adant1r D¬Daa0d=bcbcb2Dc2=ae=fgfgf2Dg2=ade1stdmoda2nddmoda=1stemoda2ndemodaa
64 simp-4l D¬Daa0d=bcbcb2Dc2=aD
65 64 3ad2ant1 D¬Daa0d=bcbcb2Dc2=ae=fgfgf2Dg2=ade1stdmoda2nddmoda=1stemoda2ndemodaD
66 simp-4r D¬Daa0d=bcbcb2Dc2=a¬D
67 66 3ad2ant1 D¬Daa0d=bcbcb2Dc2=ae=fgfgf2Dg2=ade1stdmoda2nddmoda=1stemoda2ndemoda¬D
68 simp2ll D¬Daa0d=bcbcb2Dc2=afgf2Dg2=ade1stdmoda2nddmoda=1stemoda2ndemodaf
69 68 3adant2l D¬Daa0d=bcbcb2Dc2=ae=fgfgf2Dg2=ade1stdmoda2nddmoda=1stemoda2ndemodaf
70 simp2lr D¬Daa0d=bcbcb2Dc2=afgf2Dg2=ade1stdmoda2nddmoda=1stemoda2ndemodag
71 70 3adant2l D¬Daa0d=bcbcb2Dc2=ae=fgfgf2Dg2=ade1stdmoda2nddmoda=1stemoda2ndemodag
72 simp2l D¬Daa0d=bcbcb2Dc2=ae=fgfgf2Dg2=ade1stdmoda2nddmoda=1stemoda2ndemodae=fg
73 simp1rl D¬Daa0d=bcbcb2Dc2=ae=fgfgf2Dg2=ade1stdmoda2nddmoda=1stemoda2ndemodad=bc
74 simp3l D¬Daa0d=bcbcb2Dc2=ae=fgfgf2Dg2=ade1stdmoda2nddmoda=1stemoda2ndemodade
75 simp3 e=fgd=bcdede
76 simp2 e=fgd=bcded=bc
77 simp1 e=fgd=bcdee=fg
78 75 76 77 3netr3d e=fgd=bcdebcfg
79 vex bV
80 vex cV
81 79 80 opth bc=fgb=fc=g
82 81 necon3abii bcfg¬b=fc=g
83 78 82 sylib e=fgd=bcde¬b=fc=g
84 72 73 74 83 syl3anc D¬Daa0d=bcbcb2Dc2=ae=fgfgf2Dg2=ade1stdmoda2nddmoda=1stemoda2ndemoda¬b=fc=g
85 simp1lr D¬Daa0d=bcbcb2Dc2=ae=fgfgf2Dg2=ade1stdmoda2nddmoda=1stemoda2ndemodaa0
86 simp1rr d=bcbcb2Dc2=ae=fgfgf2Dg2=ade1stdmoda2nddmoda=1stemoda2ndemodab2Dc2=a
87 86 3adant1l D¬Daa0d=bcbcb2Dc2=ae=fgfgf2Dg2=ade1stdmoda2nddmoda=1stemoda2ndemodab2Dc2=a
88 simp2rr D¬Daa0d=bcbcb2Dc2=ae=fgfgf2Dg2=ade1stdmoda2nddmoda=1stemoda2ndemodaf2Dg2=a
89 simp3r D¬Daa0d=bcbcb2Dc2=ae=fgfgf2Dg2=ade1stdmoda2nddmoda=1stemoda2ndemoda1stdmoda2nddmoda=1stemoda2ndemoda
90 simp3 d=bce=fg1stdmoda2nddmoda=1stemoda2ndemoda1stdmoda2nddmoda=1stemoda2ndemoda
91 ovex 1stdmodaV
92 ovex 2nddmodaV
93 91 92 opth 1stdmoda2nddmoda=1stemoda2ndemoda1stdmoda=1stemoda2nddmoda=2ndemoda
94 90 93 sylib d=bce=fg1stdmoda2nddmoda=1stemoda2ndemoda1stdmoda=1stemoda2nddmoda=2ndemoda
95 simprl d=bce=fg1stdmoda=1stemoda2nddmoda=2ndemoda1stdmoda=1stemoda
96 simpll d=bce=fg1stdmoda=1stemoda2nddmoda=2ndemodad=bc
97 96 fveq2d d=bce=fg1stdmoda=1stemoda2nddmoda=2ndemoda1std=1stbc
98 79 80 op1st 1stbc=b
99 97 98 eqtrdi d=bce=fg1stdmoda=1stemoda2nddmoda=2ndemoda1std=b
100 99 oveq1d d=bce=fg1stdmoda=1stemoda2nddmoda=2ndemoda1stdmoda=bmoda
101 simplr d=bce=fg1stdmoda=1stemoda2nddmoda=2ndemodae=fg
102 101 fveq2d d=bce=fg1stdmoda=1stemoda2nddmoda=2ndemoda1ste=1stfg
103 vex fV
104 vex gV
105 103 104 op1st 1stfg=f
106 102 105 eqtrdi d=bce=fg1stdmoda=1stemoda2nddmoda=2ndemoda1ste=f
107 106 oveq1d d=bce=fg1stdmoda=1stemoda2nddmoda=2ndemoda1stemoda=fmoda
108 95 100 107 3eqtr3d d=bce=fg1stdmoda=1stemoda2nddmoda=2ndemodabmoda=fmoda
109 simprr d=bce=fg1stdmoda=1stemoda2nddmoda=2ndemoda2nddmoda=2ndemoda
110 96 fveq2d d=bce=fg1stdmoda=1stemoda2nddmoda=2ndemoda2ndd=2ndbc
111 79 80 op2nd 2ndbc=c
112 110 111 eqtrdi d=bce=fg1stdmoda=1stemoda2nddmoda=2ndemoda2ndd=c
113 112 oveq1d d=bce=fg1stdmoda=1stemoda2nddmoda=2ndemoda2nddmoda=cmoda
114 101 fveq2d d=bce=fg1stdmoda=1stemoda2nddmoda=2ndemoda2nde=2ndfg
115 103 104 op2nd 2ndfg=g
116 114 115 eqtrdi d=bce=fg1stdmoda=1stemoda2nddmoda=2ndemoda2nde=g
117 116 oveq1d d=bce=fg1stdmoda=1stemoda2nddmoda=2ndemoda2ndemoda=gmoda
118 109 113 117 3eqtr3d d=bce=fg1stdmoda=1stemoda2nddmoda=2ndemodacmoda=gmoda
119 108 118 jca d=bce=fg1stdmoda=1stemoda2nddmoda=2ndemodabmoda=fmodacmoda=gmoda
120 119 ex d=bce=fg1stdmoda=1stemoda2nddmoda=2ndemodabmoda=fmodacmoda=gmoda
121 120 3adant3 d=bce=fg1stdmoda2nddmoda=1stemoda2ndemoda1stdmoda=1stemoda2nddmoda=2ndemodabmoda=fmodacmoda=gmoda
122 94 121 mpd d=bce=fg1stdmoda2nddmoda=1stemoda2ndemodabmoda=fmodacmoda=gmoda
123 73 72 89 122 syl3anc D¬Daa0d=bcbcb2Dc2=ae=fgfgf2Dg2=ade1stdmoda2nddmoda=1stemoda2ndemodabmoda=fmodacmoda=gmoda
124 123 simpld D¬Daa0d=bcbcb2Dc2=ae=fgfgf2Dg2=ade1stdmoda2nddmoda=1stemoda2ndemodabmoda=fmoda
125 123 simprd D¬Daa0d=bcbcb2Dc2=ae=fgfgf2Dg2=ade1stdmoda2nddmoda=1stemoda2ndemodacmoda=gmoda
126 58 61 63 65 67 69 71 84 85 87 88 124 125 pellexlem6 D¬Daa0d=bcbcb2Dc2=ae=fgfgf2Dg2=ade1stdmoda2nddmoda=1stemoda2ndemodaxyx2Dy2=1
127 126 3exp D¬Daa0d=bcbcb2Dc2=ae=fgfgf2Dg2=ade1stdmoda2nddmoda=1stemoda2ndemodaxyx2Dy2=1
128 127 exlimdvv D¬Daa0d=bcbcb2Dc2=afge=fgfgf2Dg2=ade1stdmoda2nddmoda=1stemoda2ndemodaxyx2Dy2=1
129 55 128 biimtrid D¬Daa0d=bcbcb2Dc2=aefg|fgf2Dg2=ade1stdmoda2nddmoda=1stemoda2ndemodaxyx2Dy2=1
130 129 ex D¬Daa0d=bcbcb2Dc2=aefg|fgf2Dg2=ade1stdmoda2nddmoda=1stemoda2ndemodaxyx2Dy2=1
131 130 exlimdvv D¬Daa0bcd=bcbcb2Dc2=aefg|fgf2Dg2=ade1stdmoda2nddmoda=1stemoda2ndemodaxyx2Dy2=1
132 54 131 biimtrid D¬Daa0dbc|bcb2Dc2=aefg|fgf2Dg2=ade1stdmoda2nddmoda=1stemoda2ndemodaxyx2Dy2=1
133 132 impd D¬Daa0dbc|bcb2Dc2=aefg|fgf2Dg2=ade1stdmoda2nddmoda=1stemoda2ndemodaxyx2Dy2=1
134 53 133 sylan2i D¬Daa0dbc|bcb2Dc2=aebc|bcb2Dc2=ade1stdmoda2nddmoda=1stemoda2ndemodaxyx2Dy2=1
135 134 rexlimdvv D¬Daa0dbc|bcb2Dc2=aebc|bcb2Dc2=ade1stdmoda2nddmoda=1stemoda2ndemodaxyx2Dy2=1
136 135 imp D¬Daa0dbc|bcb2Dc2=aebc|bcb2Dc2=ade1stdmoda2nddmoda=1stemoda2ndemodaxyx2Dy2=1
137 136 adantlrr D¬Daa0bc|bcb2Dc2=adbc|bcb2Dc2=aebc|bcb2Dc2=ade1stdmoda2nddmoda=1stemoda2ndemodaxyx2Dy2=1
138 41 137 mpdan D¬Daa0bc|bcb2Dc2=axyx2Dy2=1
139 pellexlem5 D¬Daa0bc|bcb2Dc2=a
140 138 139 r19.29a D¬Dxyx2Dy2=1