Metamath Proof Explorer


Theorem pellexlem2

Description: Lemma for pellex . Arithmetical core of pellexlem3, norm upper bound. (Contributed by Stefan O'Rear, 14-Sep-2014)

Ref Expression
Assertion pellexlem2 DABABD<B2A2DB2<1+2D

Proof

Step Hyp Ref Expression
1 simpl3 DABABD<B2B
2 1 nnred DABABD<B2B
3 2 resqcld DABABD<B2B2
4 2 sqge0d DABABD<B20B2
5 3 4 absidd DABABD<B2B2=B2
6 5 eqcomd DABABD<B2B2=B2
7 6 oveq2d DABABD<B2A2DB2B2=A2DB2B2
8 simpl2 DABABD<B2A
9 8 nncnd DABABD<B2A
10 9 sqcld DABABD<B2A2
11 simpl1 DABABD<B2D
12 11 nncnd DABABD<B2D
13 1 nncnd DABABD<B2B
14 13 sqcld DABABD<B2B2
15 12 14 mulcld DABABD<B2DB2
16 10 15 subcld DABABD<B2A2DB2
17 1 nnne0d DABABD<B2B0
18 sqne0 BB20B0
19 18 biimpar BB0B20
20 13 17 19 syl2anc DABABD<B2B20
21 16 14 20 absdivd DABABD<B2A2DB2B2=A2DB2B2
22 7 21 eqtr4d DABABD<B2A2DB2B2=A2DB2B2
23 22 oveq2d DABABD<B2B2A2DB2B2=B2A2DB2B2
24 16 abscld DABABD<B2A2DB2
25 24 recnd DABABD<B2A2DB2
26 25 14 20 divcan2d DABABD<B2B2A2DB2B2=A2DB2
27 10 15 14 20 divsubdird DABABD<B2A2DB2B2=A2B2DB2B2
28 9 13 17 sqdivd DABABD<B2AB2=A2B2
29 28 eqcomd DABABD<B2A2B2=AB2
30 11 nnred DABABD<B2D
31 11 nnnn0d DABABD<B2D0
32 31 nn0ge0d DABABD<B20D
33 remsqsqrt D0DDD=D
34 30 32 33 syl2anc DABABD<B2DD=D
35 30 32 resqrtcld DABABD<B2D
36 35 recnd DABABD<B2D
37 36 sqvald DABABD<B2D2=DD
38 12 14 20 divcan4d DABABD<B2DB2B2=D
39 34 37 38 3eqtr4rd DABABD<B2DB2B2=D2
40 29 39 oveq12d DABABD<B2A2B2DB2B2=AB2D2
41 9 13 17 divcld DABABD<B2AB
42 subsq ABDAB2D2=AB+DABD
43 41 36 42 syl2anc DABABD<B2AB2D2=AB+DABD
44 41 36 addcld DABABD<B2AB+D
45 8 nnred DABABD<B2A
46 45 1 nndivred DABABD<B2AB
47 46 35 resubcld DABABD<B2ABD
48 47 recnd DABABD<B2ABD
49 44 48 mulcomd DABABD<B2AB+DABD=ABDAB+D
50 43 49 eqtrd DABABD<B2AB2D2=ABDAB+D
51 27 40 50 3eqtrd DABABD<B2A2DB2B2=ABDAB+D
52 51 fveq2d DABABD<B2A2DB2B2=ABDAB+D
53 52 oveq2d DABABD<B2B2A2DB2B2=B2ABDAB+D
54 23 26 53 3eqtr3d DABABD<B2A2DB2=B2ABDAB+D
55 48 44 absmuld DABABD<B2ABDAB+D=ABDAB+D
56 55 oveq2d DABABD<B2B2ABDAB+D=B2ABDAB+D
57 48 abscld DABABD<B2ABD
58 44 abscld DABABD<B2AB+D
59 57 58 remulcld DABABD<B2ABDAB+D
60 3 59 remulcld DABABD<B2B2ABDAB+D
61 2nn0 20
62 61 nn0negzi 2
63 62 a1i DABABD<B22
64 2 17 63 reexpclzd DABABD<B2B2
65 64 58 remulcld DABABD<B2B2AB+D
66 3 65 remulcld DABABD<B2B2B2AB+D
67 1red DABABD<B21
68 2re 2
69 68 a1i DABABD<B22
70 69 35 remulcld DABABD<B22D
71 67 70 readdcld DABABD<B21+2D
72 simpr DABABD<B2ABD<B2
73 8 nngt0d DABABD<B20<A
74 1 nngt0d DABABD<B20<B
75 45 2 73 74 divgt0d DABABD<B20<AB
76 11 nngt0d DABABD<B20<D
77 sqrtgt0 D0<D0<D
78 30 76 77 syl2anc DABABD<B20<D
79 46 35 75 78 addgt0d DABABD<B20<AB+D
80 79 gt0ne0d DABABD<B2AB+D0
81 absgt0 AB+DAB+D00<AB+D
82 81 biimpa AB+DAB+D00<AB+D
83 44 80 82 syl2anc DABABD<B20<AB+D
84 ltmul1 ABDB2AB+D0<AB+DABD<B2ABDAB+D<B2AB+D
85 57 64 58 83 84 syl112anc DABABD<B2ABD<B2ABDAB+D<B2AB+D
86 72 85 mpbid DABABD<B2ABDAB+D<B2AB+D
87 2 17 sqgt0d DABABD<B20<B2
88 ltmul2 ABDAB+DB2AB+DB20<B2ABDAB+D<B2AB+DB2ABDAB+D<B2B2AB+D
89 59 65 3 87 88 syl112anc DABABD<B2ABDAB+D<B2AB+DB2ABDAB+D<B2B2AB+D
90 86 89 mpbid DABABD<B2B2ABDAB+D<B2B2AB+D
91 13 17 63 expclzd DABABD<B2B2
92 58 recnd DABABD<B2AB+D
93 mulass B2B2AB+DB2B2AB+D=B2B2AB+D
94 93 eqcomd B2B2AB+DB2B2AB+D=B2B2AB+D
95 14 91 92 94 syl3anc DABABD<B2B2B2AB+D=B2B2AB+D
96 expneg B20B2=1B2
97 13 61 96 sylancl DABABD<B2B2=1B2
98 97 oveq2d DABABD<B2B2B2=B21B2
99 14 20 recidd DABABD<B2B21B2=1
100 98 99 eqtrd DABABD<B2B2B2=1
101 100 oveq1d DABABD<B2B2B2AB+D=1AB+D
102 92 mullidd DABABD<B21AB+D=AB+D
103 95 101 102 3eqtrd DABABD<B2B2B2AB+D=AB+D
104 41 36 addcomd DABABD<B2AB+D=D+AB
105 ppncan DDABD+D+ABD=D+AB
106 105 eqcomd DDABD+AB=D+D+ABD
107 36 36 41 106 syl3anc DABABD<B2D+AB=D+D+ABD
108 36 36 addcld DABABD<B2D+D
109 108 48 addcomd DABABD<B2D+D+ABD=ABD+D+D
110 2times D2D=D+D
111 110 eqcomd DD+D=2D
112 36 111 syl DABABD<B2D+D=2D
113 112 oveq2d DABABD<B2ABD+D+D=AB-D+2D
114 109 113 eqtrd DABABD<B2D+D+ABD=AB-D+2D
115 104 107 114 3eqtrd DABABD<B2AB+D=AB-D+2D
116 115 fveq2d DABABD<B2AB+D=AB-D+2D
117 47 70 readdcld DABABD<B2AB-D+2D
118 117 recnd DABABD<B2AB-D+2D
119 118 abscld DABABD<B2AB-D+2D
120 70 recnd DABABD<B22D
121 120 abscld DABABD<B22D
122 57 121 readdcld DABABD<B2ABD+2D
123 48 120 abstrid DABABD<B2AB-D+2DABD+2D
124 0le2 02
125 124 a1i DABABD<B202
126 30 32 sqrtge0d DABABD<B20D
127 69 35 125 126 mulge0d DABABD<B202D
128 70 127 absidd DABABD<B22D=2D
129 128 oveq2d DABABD<B2ABD+2D=ABD+2D
130 1 nnsqcld DABABD<B2B2
131 130 nnge1d DABABD<B21B2
132 0lt1 0<1
133 132 a1i DABABD<B20<1
134 lerec 10<1B20<B21B21B211
135 67 133 3 87 134 syl22anc DABABD<B21B21B211
136 131 135 mpbid DABABD<B21B211
137 1div1e1 11=1
138 136 137 breqtrdi DABABD<B21B21
139 97 138 eqbrtrd DABABD<B2B21
140 57 64 67 72 139 ltletrd DABABD<B2ABD<1
141 57 67 140 ltled DABABD<B2ABD1
142 57 67 70 141 leadd1dd DABABD<B2ABD+2D1+2D
143 129 142 eqbrtrd DABABD<B2ABD+2D1+2D
144 119 122 71 123 143 letrd DABABD<B2AB-D+2D1+2D
145 116 144 eqbrtrd DABABD<B2AB+D1+2D
146 103 145 eqbrtrd DABABD<B2B2B2AB+D1+2D
147 60 66 71 90 146 ltletrd DABABD<B2B2ABDAB+D<1+2D
148 56 147 eqbrtrd DABABD<B2B2ABDAB+D<1+2D
149 54 148 eqbrtrd DABABD<B2A2DB2<1+2D