Metamath Proof Explorer


Theorem plyaddlem1

Description: Derive the coefficient function for the sum of two polynomials. (Contributed by Mario Carneiro, 23-Jul-2014)

Ref Expression
Hypotheses plyaddlem.1 φFPolyS
plyaddlem.2 φGPolyS
plyaddlem.m φM0
plyaddlem.n φN0
plyaddlem.a φA:0
plyaddlem.b φB:0
plyaddlem.a2 φAM+1=0
plyaddlem.b2 φBN+1=0
plyaddlem.f φF=zk=0MAkzk
plyaddlem.g φG=zk=0NBkzk
Assertion plyaddlem1 φF+fG=zk=0ifMNNMA+fBkzk

Proof

Step Hyp Ref Expression
1 plyaddlem.1 φFPolyS
2 plyaddlem.2 φGPolyS
3 plyaddlem.m φM0
4 plyaddlem.n φN0
5 plyaddlem.a φA:0
6 plyaddlem.b φB:0
7 plyaddlem.a2 φAM+1=0
8 plyaddlem.b2 φBN+1=0
9 plyaddlem.f φF=zk=0MAkzk
10 plyaddlem.g φG=zk=0NBkzk
11 cnex V
12 11 a1i φV
13 sumex k=0MAkzkV
14 13 a1i φzk=0MAkzkV
15 sumex k=0NBkzkV
16 15 a1i φzk=0NBkzkV
17 12 14 16 9 10 offval2 φF+fG=zk=0MAkzk+k=0NBkzk
18 fzfid φz0ifMNNMFin
19 elfznn0 k0ifMNNMk0
20 5 adantr φzA:0
21 20 ffvelcdmda φzk0Ak
22 expcl zk0zk
23 22 adantll φzk0zk
24 21 23 mulcld φzk0Akzk
25 19 24 sylan2 φzk0ifMNNMAkzk
26 6 adantr φzB:0
27 26 ffvelcdmda φzk0Bk
28 27 23 mulcld φzk0Bkzk
29 19 28 sylan2 φzk0ifMNNMBkzk
30 18 25 29 fsumadd φzk=0ifMNNMAkzk+Bkzk=k=0ifMNNMAkzk+k=0ifMNNMBkzk
31 5 ffnd φAFn0
32 6 ffnd φBFn0
33 nn0ex 0V
34 33 a1i φ0V
35 inidm 00=0
36 eqidd φk0Ak=Ak
37 eqidd φk0Bk=Bk
38 31 32 34 34 35 36 37 ofval φk0A+fBk=Ak+Bk
39 38 adantlr φzk0A+fBk=Ak+Bk
40 39 oveq1d φzk0A+fBkzk=Ak+Bkzk
41 21 27 23 adddird φzk0Ak+Bkzk=Akzk+Bkzk
42 40 41 eqtrd φzk0A+fBkzk=Akzk+Bkzk
43 19 42 sylan2 φzk0ifMNNMA+fBkzk=Akzk+Bkzk
44 43 sumeq2dv φzk=0ifMNNMA+fBkzk=k=0ifMNNMAkzk+Bkzk
45 3 nn0zd φM
46 4 3 ifcld φifMNNM0
47 46 nn0zd φifMNNM
48 3 nn0red φM
49 4 nn0red φN
50 max1 MNMifMNNM
51 48 49 50 syl2anc φMifMNNM
52 eluz2 ifMNNMMMifMNNMMifMNNM
53 45 47 51 52 syl3anbrc φifMNNMM
54 fzss2 ifMNNMM0M0ifMNNM
55 53 54 syl φ0M0ifMNNM
56 55 adantr φz0M0ifMNNM
57 elfznn0 k0Mk0
58 57 24 sylan2 φzk0MAkzk
59 eldifn k0ifMNNM0M¬k0M
60 59 adantl φzk0ifMNNM0M¬k0M
61 eldifi k0ifMNNM0Mk0ifMNNM
62 61 19 syl k0ifMNNM0Mk0
63 62 adantl φzk0ifMNNM0Mk0
64 nn0uz 0=0
65 peano2nn0 M0M+10
66 3 65 syl φM+10
67 66 64 eleqtrdi φM+10
68 uzsplit M+100=0M+1-1M+1
69 67 68 syl φ0=0M+1-1M+1
70 64 69 eqtrid φ0=0M+1-1M+1
71 3 nn0cnd φM
72 ax-1cn 1
73 pncan M1M+1-1=M
74 71 72 73 sylancl φM+1-1=M
75 74 oveq2d φ0M+1-1=0M
76 75 uneq1d φ0M+1-1M+1=0MM+1
77 70 76 eqtrd φ0=0MM+1
78 77 ad2antrr φzk0ifMNNM0M0=0MM+1
79 63 78 eleqtrd φzk0ifMNNM0Mk0MM+1
80 elun k0MM+1k0MkM+1
81 79 80 sylib φzk0ifMNNM0Mk0MkM+1
82 81 ord φzk0ifMNNM0M¬k0MkM+1
83 60 82 mpd φzk0ifMNNM0MkM+1
84 5 ffund φFunA
85 ssun2 M+10M+1-1M+1
86 85 70 sseqtrrid φM+10
87 5 fdmd φdomA=0
88 86 87 sseqtrrd φM+1domA
89 funfvima2 FunAM+1domAkM+1AkAM+1
90 84 88 89 syl2anc φkM+1AkAM+1
91 90 ad2antrr φzk0ifMNNM0MkM+1AkAM+1
92 83 91 mpd φzk0ifMNNM0MAkAM+1
93 7 ad2antrr φzk0ifMNNM0MAM+1=0
94 92 93 eleqtrd φzk0ifMNNM0MAk0
95 elsni Ak0Ak=0
96 94 95 syl φzk0ifMNNM0MAk=0
97 96 oveq1d φzk0ifMNNM0MAkzk=0zk
98 62 23 sylan2 φzk0ifMNNM0Mzk
99 98 mul02d φzk0ifMNNM0M0zk=0
100 97 99 eqtrd φzk0ifMNNM0MAkzk=0
101 56 58 100 18 fsumss φzk=0MAkzk=k=0ifMNNMAkzk
102 4 nn0zd φN
103 max2 MNNifMNNM
104 48 49 103 syl2anc φNifMNNM
105 eluz2 ifMNNMNNifMNNMNifMNNM
106 102 47 104 105 syl3anbrc φifMNNMN
107 fzss2 ifMNNMN0N0ifMNNM
108 106 107 syl φ0N0ifMNNM
109 108 adantr φz0N0ifMNNM
110 elfznn0 k0Nk0
111 110 28 sylan2 φzk0NBkzk
112 eldifn k0ifMNNM0N¬k0N
113 112 adantl φzk0ifMNNM0N¬k0N
114 eldifi k0ifMNNM0Nk0ifMNNM
115 114 19 syl k0ifMNNM0Nk0
116 115 adantl φzk0ifMNNM0Nk0
117 peano2nn0 N0N+10
118 4 117 syl φN+10
119 118 64 eleqtrdi φN+10
120 uzsplit N+100=0N+1-1N+1
121 119 120 syl φ0=0N+1-1N+1
122 64 121 eqtrid φ0=0N+1-1N+1
123 4 nn0cnd φN
124 pncan N1N+1-1=N
125 123 72 124 sylancl φN+1-1=N
126 125 oveq2d φ0N+1-1=0N
127 126 uneq1d φ0N+1-1N+1=0NN+1
128 122 127 eqtrd φ0=0NN+1
129 128 ad2antrr φzk0ifMNNM0N0=0NN+1
130 116 129 eleqtrd φzk0ifMNNM0Nk0NN+1
131 elun k0NN+1k0NkN+1
132 130 131 sylib φzk0ifMNNM0Nk0NkN+1
133 132 ord φzk0ifMNNM0N¬k0NkN+1
134 113 133 mpd φzk0ifMNNM0NkN+1
135 6 ffund φFunB
136 ssun2 N+10N+1-1N+1
137 136 122 sseqtrrid φN+10
138 6 fdmd φdomB=0
139 137 138 sseqtrrd φN+1domB
140 funfvima2 FunBN+1domBkN+1BkBN+1
141 135 139 140 syl2anc φkN+1BkBN+1
142 141 ad2antrr φzk0ifMNNM0NkN+1BkBN+1
143 134 142 mpd φzk0ifMNNM0NBkBN+1
144 8 ad2antrr φzk0ifMNNM0NBN+1=0
145 143 144 eleqtrd φzk0ifMNNM0NBk0
146 elsni Bk0Bk=0
147 145 146 syl φzk0ifMNNM0NBk=0
148 147 oveq1d φzk0ifMNNM0NBkzk=0zk
149 115 23 sylan2 φzk0ifMNNM0Nzk
150 149 mul02d φzk0ifMNNM0N0zk=0
151 148 150 eqtrd φzk0ifMNNM0NBkzk=0
152 109 111 151 18 fsumss φzk=0NBkzk=k=0ifMNNMBkzk
153 101 152 oveq12d φzk=0MAkzk+k=0NBkzk=k=0ifMNNMAkzk+k=0ifMNNMBkzk
154 30 44 153 3eqtr4d φzk=0ifMNNMA+fBkzk=k=0MAkzk+k=0NBkzk
155 154 mpteq2dva φzk=0ifMNNMA+fBkzk=zk=0MAkzk+k=0NBkzk
156 17 155 eqtr4d φF+fG=zk=0ifMNNMA+fBkzk