| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmatcollpw.p |
|
| 2 |
|
pmatcollpw.c |
|
| 3 |
|
pmatcollpw.b |
|
| 4 |
|
pmatcollpw.m |
|
| 5 |
|
pmatcollpw.e |
|
| 6 |
|
pmatcollpw.x |
|
| 7 |
|
pmatcollpw.t |
|
| 8 |
|
crngring |
|
| 9 |
|
eqid |
|
| 10 |
1 2 3 9 5 6
|
pmatcollpw2 |
|
| 11 |
8 10
|
syl3an2 |
|
| 12 |
|
eqidd |
|
| 13 |
|
oveq12 |
|
| 14 |
13
|
oveq1d |
|
| 15 |
14
|
adantl |
|
| 16 |
|
simprl |
|
| 17 |
|
simpr |
|
| 18 |
17
|
adantl |
|
| 19 |
|
simp2 |
|
| 20 |
19
|
adantr |
|
| 21 |
20 8
|
syl |
|
| 22 |
21
|
adantr |
|
| 23 |
|
eqid |
|
| 24 |
|
eqid |
|
| 25 |
|
eqid |
|
| 26 |
|
simp3 |
|
| 27 |
26
|
adantr |
|
| 28 |
|
simpr |
|
| 29 |
1 2 3 23 25
|
decpmatcl |
|
| 30 |
20 27 28 29
|
syl3anc |
|
| 31 |
30
|
adantr |
|
| 32 |
23 24 25 16 18 31
|
matecld |
|
| 33 |
|
simplr |
|
| 34 |
|
eqid |
|
| 35 |
|
eqid |
|
| 36 |
24 1 6 9 34 5 35
|
ply1tmcl |
|
| 37 |
22 32 33 36
|
syl3anc |
|
| 38 |
12 15 16 18 37
|
ovmpod |
|
| 39 |
1 2 3 4 5 6 7
|
pmatcollpwlem |
|
| 40 |
39
|
3expb |
|
| 41 |
38 40
|
eqtrd |
|
| 42 |
41
|
ralrimivva |
|
| 43 |
|
simpl1 |
|
| 44 |
1
|
ply1ring |
|
| 45 |
8 44
|
syl |
|
| 46 |
45
|
3ad2ant2 |
|
| 47 |
46
|
adantr |
|
| 48 |
21
|
3ad2ant1 |
|
| 49 |
|
simp2 |
|
| 50 |
|
simp3 |
|
| 51 |
30
|
3ad2ant1 |
|
| 52 |
23 24 25 49 50 51
|
matecld |
|
| 53 |
28
|
3ad2ant1 |
|
| 54 |
24 1 6 9 34 5 35
|
ply1tmcl |
|
| 55 |
48 52 53 54
|
syl3anc |
|
| 56 |
2 35 3 43 47 55
|
matbas2d |
|
| 57 |
8
|
3ad2ant2 |
|
| 58 |
1 6 34 5 35
|
ply1moncl |
|
| 59 |
57 58
|
sylan |
|
| 60 |
57
|
adantr |
|
| 61 |
7 23 25 1 2
|
mat2pmatbas |
|
| 62 |
43 60 30 61
|
syl3anc |
|
| 63 |
62 3
|
eleqtrrdi |
|
| 64 |
35 2 3 4
|
matvscl |
|
| 65 |
43 47 59 63 64
|
syl22anc |
|
| 66 |
2 3
|
eqmat |
|
| 67 |
56 65 66
|
syl2anc |
|
| 68 |
42 67
|
mpbird |
|
| 69 |
68
|
mpteq2dva |
|
| 70 |
69
|
oveq2d |
|
| 71 |
11 70
|
eqtrd |
|