Metamath Proof Explorer


Theorem pmatcollpw

Description: Write a polynomial matrix (over a commutative ring) as a sum of products of variable powers and constant matrices with scalar entries. (Contributed by AV, 26-Oct-2019) (Revised by AV, 4-Dec-2019)

Ref Expression
Hypotheses pmatcollpw.p P=Poly1R
pmatcollpw.c C=NMatP
pmatcollpw.b B=BaseC
pmatcollpw.m ˙=C
pmatcollpw.e ×˙=mulGrpP
pmatcollpw.x X=var1R
pmatcollpw.t T=NmatToPolyMatR
Assertion pmatcollpw NFinRCRingMBM=Cn0n×˙X˙TMdecompPMatn

Proof

Step Hyp Ref Expression
1 pmatcollpw.p P=Poly1R
2 pmatcollpw.c C=NMatP
3 pmatcollpw.b B=BaseC
4 pmatcollpw.m ˙=C
5 pmatcollpw.e ×˙=mulGrpP
6 pmatcollpw.x X=var1R
7 pmatcollpw.t T=NmatToPolyMatR
8 crngring RCRingRRing
9 eqid P=P
10 1 2 3 9 5 6 pmatcollpw2 NFinRRingMBM=Cn0iN,jNiMdecompPMatnjPn×˙X
11 8 10 syl3an2 NFinRCRingMBM=Cn0iN,jNiMdecompPMatnjPn×˙X
12 eqidd NFinRCRingMBn0aNbNiN,jNiMdecompPMatnjPn×˙X=iN,jNiMdecompPMatnjPn×˙X
13 oveq12 i=aj=biMdecompPMatnj=aMdecompPMatnb
14 13 oveq1d i=aj=biMdecompPMatnjPn×˙X=aMdecompPMatnbPn×˙X
15 14 adantl NFinRCRingMBn0aNbNi=aj=biMdecompPMatnjPn×˙X=aMdecompPMatnbPn×˙X
16 simprl NFinRCRingMBn0aNbNaN
17 simpr aNbNbN
18 17 adantl NFinRCRingMBn0aNbNbN
19 simp2 NFinRCRingMBRCRing
20 19 adantr NFinRCRingMBn0RCRing
21 20 8 syl NFinRCRingMBn0RRing
22 21 adantr NFinRCRingMBn0aNbNRRing
23 eqid NMatR=NMatR
24 eqid BaseR=BaseR
25 eqid BaseNMatR=BaseNMatR
26 simp3 NFinRCRingMBMB
27 26 adantr NFinRCRingMBn0MB
28 simpr NFinRCRingMBn0n0
29 1 2 3 23 25 decpmatcl RCRingMBn0MdecompPMatnBaseNMatR
30 20 27 28 29 syl3anc NFinRCRingMBn0MdecompPMatnBaseNMatR
31 30 adantr NFinRCRingMBn0aNbNMdecompPMatnBaseNMatR
32 23 24 25 16 18 31 matecld NFinRCRingMBn0aNbNaMdecompPMatnbBaseR
33 simplr NFinRCRingMBn0aNbNn0
34 eqid mulGrpP=mulGrpP
35 eqid BaseP=BaseP
36 24 1 6 9 34 5 35 ply1tmcl RRingaMdecompPMatnbBaseRn0aMdecompPMatnbPn×˙XBaseP
37 22 32 33 36 syl3anc NFinRCRingMBn0aNbNaMdecompPMatnbPn×˙XBaseP
38 12 15 16 18 37 ovmpod NFinRCRingMBn0aNbNaiN,jNiMdecompPMatnjPn×˙Xb=aMdecompPMatnbPn×˙X
39 1 2 3 4 5 6 7 pmatcollpwlem NFinRCRingMBn0aNbNaMdecompPMatnbPn×˙X=an×˙X˙TMdecompPMatnb
40 39 3expb NFinRCRingMBn0aNbNaMdecompPMatnbPn×˙X=an×˙X˙TMdecompPMatnb
41 38 40 eqtrd NFinRCRingMBn0aNbNaiN,jNiMdecompPMatnjPn×˙Xb=an×˙X˙TMdecompPMatnb
42 41 ralrimivva NFinRCRingMBn0aNbNaiN,jNiMdecompPMatnjPn×˙Xb=an×˙X˙TMdecompPMatnb
43 simpl1 NFinRCRingMBn0NFin
44 1 ply1ring RRingPRing
45 8 44 syl RCRingPRing
46 45 3ad2ant2 NFinRCRingMBPRing
47 46 adantr NFinRCRingMBn0PRing
48 21 3ad2ant1 NFinRCRingMBn0iNjNRRing
49 simp2 NFinRCRingMBn0iNjNiN
50 simp3 NFinRCRingMBn0iNjNjN
51 30 3ad2ant1 NFinRCRingMBn0iNjNMdecompPMatnBaseNMatR
52 23 24 25 49 50 51 matecld NFinRCRingMBn0iNjNiMdecompPMatnjBaseR
53 28 3ad2ant1 NFinRCRingMBn0iNjNn0
54 24 1 6 9 34 5 35 ply1tmcl RRingiMdecompPMatnjBaseRn0iMdecompPMatnjPn×˙XBaseP
55 48 52 53 54 syl3anc NFinRCRingMBn0iNjNiMdecompPMatnjPn×˙XBaseP
56 2 35 3 43 47 55 matbas2d NFinRCRingMBn0iN,jNiMdecompPMatnjPn×˙XB
57 8 3ad2ant2 NFinRCRingMBRRing
58 1 6 34 5 35 ply1moncl RRingn0n×˙XBaseP
59 57 58 sylan NFinRCRingMBn0n×˙XBaseP
60 57 adantr NFinRCRingMBn0RRing
61 7 23 25 1 2 mat2pmatbas NFinRRingMdecompPMatnBaseNMatRTMdecompPMatnBaseC
62 43 60 30 61 syl3anc NFinRCRingMBn0TMdecompPMatnBaseC
63 62 3 eleqtrrdi NFinRCRingMBn0TMdecompPMatnB
64 35 2 3 4 matvscl NFinPRingn×˙XBasePTMdecompPMatnBn×˙X˙TMdecompPMatnB
65 43 47 59 63 64 syl22anc NFinRCRingMBn0n×˙X˙TMdecompPMatnB
66 2 3 eqmat iN,jNiMdecompPMatnjPn×˙XBn×˙X˙TMdecompPMatnBiN,jNiMdecompPMatnjPn×˙X=n×˙X˙TMdecompPMatnaNbNaiN,jNiMdecompPMatnjPn×˙Xb=an×˙X˙TMdecompPMatnb
67 56 65 66 syl2anc NFinRCRingMBn0iN,jNiMdecompPMatnjPn×˙X=n×˙X˙TMdecompPMatnaNbNaiN,jNiMdecompPMatnjPn×˙Xb=an×˙X˙TMdecompPMatnb
68 42 67 mpbird NFinRCRingMBn0iN,jNiMdecompPMatnjPn×˙X=n×˙X˙TMdecompPMatn
69 68 mpteq2dva NFinRCRingMBn0iN,jNiMdecompPMatnjPn×˙X=n0n×˙X˙TMdecompPMatn
70 69 oveq2d NFinRCRingMBCn0iN,jNiMdecompPMatnjPn×˙X=Cn0n×˙X˙TMdecompPMatn
71 11 70 eqtrd NFinRCRingMBM=Cn0n×˙X˙TMdecompPMatn