Metamath Proof Explorer


Theorem pmatcollpwscmatlem2

Description: Lemma 2 for pmatcollpwscmat . (Contributed by AV, 2-Nov-2019) (Revised by AV, 4-Dec-2019)

Ref Expression
Hypotheses pmatcollpwscmat.p P=Poly1R
pmatcollpwscmat.c C=NMatP
pmatcollpwscmat.b B=BaseC
pmatcollpwscmat.m1 ˙=C
pmatcollpwscmat.e1 ×˙=mulGrpP
pmatcollpwscmat.x X=var1R
pmatcollpwscmat.t T=NmatToPolyMatR
pmatcollpwscmat.a A=NMatR
pmatcollpwscmat.d D=BaseA
pmatcollpwscmat.u U=algScP
pmatcollpwscmat.k K=BaseR
pmatcollpwscmat.e2 E=BaseP
pmatcollpwscmat.s S=algScP
pmatcollpwscmat.1 1˙=1C
pmatcollpwscmat.m2 M=Q˙1˙
Assertion pmatcollpwscmatlem2 NFinRRingL0QETMdecompPMatL=Ucoe1QL˙1˙

Proof

Step Hyp Ref Expression
1 pmatcollpwscmat.p P=Poly1R
2 pmatcollpwscmat.c C=NMatP
3 pmatcollpwscmat.b B=BaseC
4 pmatcollpwscmat.m1 ˙=C
5 pmatcollpwscmat.e1 ×˙=mulGrpP
6 pmatcollpwscmat.x X=var1R
7 pmatcollpwscmat.t T=NmatToPolyMatR
8 pmatcollpwscmat.a A=NMatR
9 pmatcollpwscmat.d D=BaseA
10 pmatcollpwscmat.u U=algScP
11 pmatcollpwscmat.k K=BaseR
12 pmatcollpwscmat.e2 E=BaseP
13 pmatcollpwscmat.s S=algScP
14 pmatcollpwscmat.1 1˙=1C
15 pmatcollpwscmat.m2 M=Q˙1˙
16 simpl NFinRRingL0QENFinRRing
17 simpr NFinRRingRRing
18 17 adantr NFinRRingL0QERRing
19 simpr L0QEQE
20 19 anim2i NFinRRingL0QENFinRRingQE
21 df-3an NFinRRingQENFinRRingQE
22 20 21 sylibr NFinRRingL0QENFinRRingQE
23 1 2 3 12 4 14 1pmatscmul NFinRRingQEQ˙1˙B
24 15 23 eqeltrid NFinRRingQEMB
25 22 24 syl NFinRRingL0QEMB
26 simprl NFinRRingL0QEL0
27 1 2 3 8 9 decpmatcl RRingMBL0MdecompPMatLD
28 18 25 26 27 syl3anc NFinRRingL0QEMdecompPMatLD
29 df-3an NFinRRingMdecompPMatLDNFinRRingMdecompPMatLD
30 16 28 29 sylanbrc NFinRRingL0QENFinRRingMdecompPMatLD
31 eqid algScP=algScP
32 7 8 9 1 31 mat2pmatval NFinRRingMdecompPMatLDTMdecompPMatL=iN,jNalgScPiMdecompPMatLj
33 30 32 syl NFinRRingL0QETMdecompPMatL=iN,jNalgScPiMdecompPMatLj
34 18 25 26 3jca NFinRRingL0QERRingMBL0
35 34 3ad2ant1 NFinRRingL0QEiNjNRRingMBL0
36 3simpc NFinRRingL0QEiNjNiNjN
37 1 2 3 decpmate RRingMBL0iNjNiMdecompPMatLj=coe1iMjL
38 35 36 37 syl2anc NFinRRingL0QEiNjNiMdecompPMatLj=coe1iMjL
39 38 fveq2d NFinRRingL0QEiNjNalgScPiMdecompPMatLj=algScPcoe1iMjL
40 39 mpoeq3dva NFinRRingL0QEiN,jNalgScPiMdecompPMatLj=iN,jNalgScPcoe1iMjL
41 simp1lr NFinRRingL0QEiNjNRRing
42 simp2 NFinRRingL0QEiNjNiN
43 simp3 NFinRRingL0QEiNjNjN
44 25 3ad2ant1 NFinRRingL0QEiNjNMB
45 2 12 3 42 43 44 matecld NFinRRingL0QEiNjNiMjE
46 26 3ad2ant1 NFinRRingL0QEiNjNL0
47 eqid coe1iMj=coe1iMj
48 47 12 1 11 coe1fvalcl iMjEL0coe1iMjLK
49 45 46 48 syl2anc NFinRRingL0QEiNjNcoe1iMjLK
50 eqid var1R=var1R
51 eqid P=P
52 eqid mulGrpP=mulGrpP
53 eqid mulGrpP=mulGrpP
54 11 1 50 51 52 53 31 ply1scltm RRingcoe1iMjLKalgScPcoe1iMjL=coe1iMjLP0mulGrpPvar1R
55 41 49 54 syl2anc NFinRRingL0QEiNjNalgScPcoe1iMjL=coe1iMjLP0mulGrpPvar1R
56 55 mpoeq3dva NFinRRingL0QEiN,jNalgScPcoe1iMjL=iN,jNcoe1iMjLP0mulGrpPvar1R
57 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 pmatcollpwscmatlem1 NFinRRingL0QEaNbNcoe1aMbLP0mulGrpPvar1R=ifa=bUcoe1QL0P
58 eqidd NFinRRingL0QEaNbNiN,jNcoe1iMjLP0mulGrpPvar1R=iN,jNcoe1iMjLP0mulGrpPvar1R
59 oveq12 i=aj=biMj=aMb
60 59 fveq2d i=aj=bcoe1iMj=coe1aMb
61 60 fveq1d i=aj=bcoe1iMjL=coe1aMbL
62 61 oveq1d i=aj=bcoe1iMjLP0mulGrpPvar1R=coe1aMbLP0mulGrpPvar1R
63 62 adantl NFinRRingL0QEaNbNi=aj=bcoe1iMjLP0mulGrpPvar1R=coe1aMbLP0mulGrpPvar1R
64 simprl NFinRRingL0QEaNbNaN
65 simprr NFinRRingL0QEaNbNbN
66 ovexd NFinRRingL0QEaNbNcoe1aMbLP0mulGrpPvar1RV
67 58 63 64 65 66 ovmpod NFinRRingL0QEaNbNaiN,jNcoe1iMjLP0mulGrpPvar1Rb=coe1aMbLP0mulGrpPvar1R
68 simpll NFinRRingL0QENFin
69 1 ply1ring RRingPRing
70 69 adantl NFinRRingPRing
71 70 adantr NFinRRingL0QEPRing
72 pm3.22 L0QEQEL0
73 72 adantl NFinRRingL0QEQEL0
74 eqid coe1Q=coe1Q
75 74 12 1 11 coe1fvalcl QEL0coe1QLK
76 73 75 syl NFinRRingL0QEcoe1QLK
77 1 10 11 12 ply1sclcl RRingcoe1QLKUcoe1QLE
78 18 76 77 syl2anc NFinRRingL0QEUcoe1QLE
79 68 71 78 3jca NFinRRingL0QENFinPRingUcoe1QLE
80 eqid 0P=0P
81 2 12 80 14 4 scmatscmide NFinPRingUcoe1QLEaNbNaUcoe1QL˙1˙b=ifa=bUcoe1QL0P
82 79 81 sylan NFinRRingL0QEaNbNaUcoe1QL˙1˙b=ifa=bUcoe1QL0P
83 57 67 82 3eqtr4d NFinRRingL0QEaNbNaiN,jNcoe1iMjLP0mulGrpPvar1Rb=aUcoe1QL˙1˙b
84 83 ralrimivva NFinRRingL0QEaNbNaiN,jNcoe1iMjLP0mulGrpPvar1Rb=aUcoe1QL˙1˙b
85 0nn0 00
86 85 a1i NFinRRingL0QEiNjN00
87 11 1 50 51 52 53 12 ply1tmcl RRingcoe1iMjLK00coe1iMjLP0mulGrpPvar1RE
88 41 49 86 87 syl3anc NFinRRingL0QEiNjNcoe1iMjLP0mulGrpPvar1RE
89 2 12 3 68 71 88 matbas2d NFinRRingL0QEiN,jNcoe1iMjLP0mulGrpPvar1RB
90 1 2 3 12 4 14 1pmatscmul NFinRRingUcoe1QLEUcoe1QL˙1˙B
91 68 18 78 90 syl3anc NFinRRingL0QEUcoe1QL˙1˙B
92 2 3 eqmat iN,jNcoe1iMjLP0mulGrpPvar1RBUcoe1QL˙1˙BiN,jNcoe1iMjLP0mulGrpPvar1R=Ucoe1QL˙1˙aNbNaiN,jNcoe1iMjLP0mulGrpPvar1Rb=aUcoe1QL˙1˙b
93 89 91 92 syl2anc NFinRRingL0QEiN,jNcoe1iMjLP0mulGrpPvar1R=Ucoe1QL˙1˙aNbNaiN,jNcoe1iMjLP0mulGrpPvar1Rb=aUcoe1QL˙1˙b
94 84 93 mpbird NFinRRingL0QEiN,jNcoe1iMjLP0mulGrpPvar1R=Ucoe1QL˙1˙
95 56 94 eqtrd NFinRRingL0QEiN,jNalgScPcoe1iMjL=Ucoe1QL˙1˙
96 33 40 95 3eqtrd NFinRRingL0QETMdecompPMatL=Ucoe1QL˙1˙