Metamath Proof Explorer


Theorem pmatcollpwscmatlem2

Description: Lemma 2 for pmatcollpwscmat . (Contributed by AV, 2-Nov-2019) (Revised by AV, 4-Dec-2019)

Ref Expression
Hypotheses pmatcollpwscmat.p P = Poly 1 R
pmatcollpwscmat.c C = N Mat P
pmatcollpwscmat.b B = Base C
pmatcollpwscmat.m1 ˙ = C
pmatcollpwscmat.e1 × ˙ = mulGrp P
pmatcollpwscmat.x X = var 1 R
pmatcollpwscmat.t T = N matToPolyMat R
pmatcollpwscmat.a A = N Mat R
pmatcollpwscmat.d D = Base A
pmatcollpwscmat.u U = algSc P
pmatcollpwscmat.k K = Base R
pmatcollpwscmat.e2 E = Base P
pmatcollpwscmat.s S = algSc P
pmatcollpwscmat.1 1 ˙ = 1 C
pmatcollpwscmat.m2 M = Q ˙ 1 ˙
Assertion pmatcollpwscmatlem2 N Fin R Ring L 0 Q E T M decompPMat L = U coe 1 Q L ˙ 1 ˙

Proof

Step Hyp Ref Expression
1 pmatcollpwscmat.p P = Poly 1 R
2 pmatcollpwscmat.c C = N Mat P
3 pmatcollpwscmat.b B = Base C
4 pmatcollpwscmat.m1 ˙ = C
5 pmatcollpwscmat.e1 × ˙ = mulGrp P
6 pmatcollpwscmat.x X = var 1 R
7 pmatcollpwscmat.t T = N matToPolyMat R
8 pmatcollpwscmat.a A = N Mat R
9 pmatcollpwscmat.d D = Base A
10 pmatcollpwscmat.u U = algSc P
11 pmatcollpwscmat.k K = Base R
12 pmatcollpwscmat.e2 E = Base P
13 pmatcollpwscmat.s S = algSc P
14 pmatcollpwscmat.1 1 ˙ = 1 C
15 pmatcollpwscmat.m2 M = Q ˙ 1 ˙
16 simpl N Fin R Ring L 0 Q E N Fin R Ring
17 simpr N Fin R Ring R Ring
18 17 adantr N Fin R Ring L 0 Q E R Ring
19 simpr L 0 Q E Q E
20 19 anim2i N Fin R Ring L 0 Q E N Fin R Ring Q E
21 df-3an N Fin R Ring Q E N Fin R Ring Q E
22 20 21 sylibr N Fin R Ring L 0 Q E N Fin R Ring Q E
23 1 2 3 12 4 14 1pmatscmul N Fin R Ring Q E Q ˙ 1 ˙ B
24 15 23 eqeltrid N Fin R Ring Q E M B
25 22 24 syl N Fin R Ring L 0 Q E M B
26 simprl N Fin R Ring L 0 Q E L 0
27 1 2 3 8 9 decpmatcl R Ring M B L 0 M decompPMat L D
28 18 25 26 27 syl3anc N Fin R Ring L 0 Q E M decompPMat L D
29 df-3an N Fin R Ring M decompPMat L D N Fin R Ring M decompPMat L D
30 16 28 29 sylanbrc N Fin R Ring L 0 Q E N Fin R Ring M decompPMat L D
31 eqid algSc P = algSc P
32 7 8 9 1 31 mat2pmatval N Fin R Ring M decompPMat L D T M decompPMat L = i N , j N algSc P i M decompPMat L j
33 30 32 syl N Fin R Ring L 0 Q E T M decompPMat L = i N , j N algSc P i M decompPMat L j
34 18 25 26 3jca N Fin R Ring L 0 Q E R Ring M B L 0
35 34 3ad2ant1 N Fin R Ring L 0 Q E i N j N R Ring M B L 0
36 3simpc N Fin R Ring L 0 Q E i N j N i N j N
37 1 2 3 decpmate R Ring M B L 0 i N j N i M decompPMat L j = coe 1 i M j L
38 35 36 37 syl2anc N Fin R Ring L 0 Q E i N j N i M decompPMat L j = coe 1 i M j L
39 38 fveq2d N Fin R Ring L 0 Q E i N j N algSc P i M decompPMat L j = algSc P coe 1 i M j L
40 39 mpoeq3dva N Fin R Ring L 0 Q E i N , j N algSc P i M decompPMat L j = i N , j N algSc P coe 1 i M j L
41 simp1lr N Fin R Ring L 0 Q E i N j N R Ring
42 simp2 N Fin R Ring L 0 Q E i N j N i N
43 simp3 N Fin R Ring L 0 Q E i N j N j N
44 25 3ad2ant1 N Fin R Ring L 0 Q E i N j N M B
45 2 12 3 42 43 44 matecld N Fin R Ring L 0 Q E i N j N i M j E
46 26 3ad2ant1 N Fin R Ring L 0 Q E i N j N L 0
47 eqid coe 1 i M j = coe 1 i M j
48 47 12 1 11 coe1fvalcl i M j E L 0 coe 1 i M j L K
49 45 46 48 syl2anc N Fin R Ring L 0 Q E i N j N coe 1 i M j L K
50 eqid var 1 R = var 1 R
51 eqid P = P
52 eqid mulGrp P = mulGrp P
53 eqid mulGrp P = mulGrp P
54 11 1 50 51 52 53 31 ply1scltm R Ring coe 1 i M j L K algSc P coe 1 i M j L = coe 1 i M j L P 0 mulGrp P var 1 R
55 41 49 54 syl2anc N Fin R Ring L 0 Q E i N j N algSc P coe 1 i M j L = coe 1 i M j L P 0 mulGrp P var 1 R
56 55 mpoeq3dva N Fin R Ring L 0 Q E i N , j N algSc P coe 1 i M j L = i N , j N coe 1 i M j L P 0 mulGrp P var 1 R
57 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 pmatcollpwscmatlem1 N Fin R Ring L 0 Q E a N b N coe 1 a M b L P 0 mulGrp P var 1 R = if a = b U coe 1 Q L 0 P
58 eqidd N Fin R Ring L 0 Q E a N b N i N , j N coe 1 i M j L P 0 mulGrp P var 1 R = i N , j N coe 1 i M j L P 0 mulGrp P var 1 R
59 oveq12 i = a j = b i M j = a M b
60 59 fveq2d i = a j = b coe 1 i M j = coe 1 a M b
61 60 fveq1d i = a j = b coe 1 i M j L = coe 1 a M b L
62 61 oveq1d i = a j = b coe 1 i M j L P 0 mulGrp P var 1 R = coe 1 a M b L P 0 mulGrp P var 1 R
63 62 adantl N Fin R Ring L 0 Q E a N b N i = a j = b coe 1 i M j L P 0 mulGrp P var 1 R = coe 1 a M b L P 0 mulGrp P var 1 R
64 simprl N Fin R Ring L 0 Q E a N b N a N
65 simprr N Fin R Ring L 0 Q E a N b N b N
66 ovexd N Fin R Ring L 0 Q E a N b N coe 1 a M b L P 0 mulGrp P var 1 R V
67 58 63 64 65 66 ovmpod N Fin R Ring L 0 Q E a N b N a i N , j N coe 1 i M j L P 0 mulGrp P var 1 R b = coe 1 a M b L P 0 mulGrp P var 1 R
68 simpll N Fin R Ring L 0 Q E N Fin
69 1 ply1ring R Ring P Ring
70 69 adantl N Fin R Ring P Ring
71 70 adantr N Fin R Ring L 0 Q E P Ring
72 pm3.22 L 0 Q E Q E L 0
73 72 adantl N Fin R Ring L 0 Q E Q E L 0
74 eqid coe 1 Q = coe 1 Q
75 74 12 1 11 coe1fvalcl Q E L 0 coe 1 Q L K
76 73 75 syl N Fin R Ring L 0 Q E coe 1 Q L K
77 1 10 11 12 ply1sclcl R Ring coe 1 Q L K U coe 1 Q L E
78 18 76 77 syl2anc N Fin R Ring L 0 Q E U coe 1 Q L E
79 68 71 78 3jca N Fin R Ring L 0 Q E N Fin P Ring U coe 1 Q L E
80 eqid 0 P = 0 P
81 2 12 80 14 4 scmatscmide N Fin P Ring U coe 1 Q L E a N b N a U coe 1 Q L ˙ 1 ˙ b = if a = b U coe 1 Q L 0 P
82 79 81 sylan N Fin R Ring L 0 Q E a N b N a U coe 1 Q L ˙ 1 ˙ b = if a = b U coe 1 Q L 0 P
83 57 67 82 3eqtr4d N Fin R Ring L 0 Q E a N b N a i N , j N coe 1 i M j L P 0 mulGrp P var 1 R b = a U coe 1 Q L ˙ 1 ˙ b
84 83 ralrimivva N Fin R Ring L 0 Q E a N b N a i N , j N coe 1 i M j L P 0 mulGrp P var 1 R b = a U coe 1 Q L ˙ 1 ˙ b
85 0nn0 0 0
86 85 a1i N Fin R Ring L 0 Q E i N j N 0 0
87 11 1 50 51 52 53 12 ply1tmcl R Ring coe 1 i M j L K 0 0 coe 1 i M j L P 0 mulGrp P var 1 R E
88 41 49 86 87 syl3anc N Fin R Ring L 0 Q E i N j N coe 1 i M j L P 0 mulGrp P var 1 R E
89 2 12 3 68 71 88 matbas2d N Fin R Ring L 0 Q E i N , j N coe 1 i M j L P 0 mulGrp P var 1 R B
90 1 2 3 12 4 14 1pmatscmul N Fin R Ring U coe 1 Q L E U coe 1 Q L ˙ 1 ˙ B
91 68 18 78 90 syl3anc N Fin R Ring L 0 Q E U coe 1 Q L ˙ 1 ˙ B
92 2 3 eqmat i N , j N coe 1 i M j L P 0 mulGrp P var 1 R B U coe 1 Q L ˙ 1 ˙ B i N , j N coe 1 i M j L P 0 mulGrp P var 1 R = U coe 1 Q L ˙ 1 ˙ a N b N a i N , j N coe 1 i M j L P 0 mulGrp P var 1 R b = a U coe 1 Q L ˙ 1 ˙ b
93 89 91 92 syl2anc N Fin R Ring L 0 Q E i N , j N coe 1 i M j L P 0 mulGrp P var 1 R = U coe 1 Q L ˙ 1 ˙ a N b N a i N , j N coe 1 i M j L P 0 mulGrp P var 1 R b = a U coe 1 Q L ˙ 1 ˙ b
94 84 93 mpbird N Fin R Ring L 0 Q E i N , j N coe 1 i M j L P 0 mulGrp P var 1 R = U coe 1 Q L ˙ 1 ˙
95 56 94 eqtrd N Fin R Ring L 0 Q E i N , j N algSc P coe 1 i M j L = U coe 1 Q L ˙ 1 ˙
96 33 40 95 3eqtrd N Fin R Ring L 0 Q E T M decompPMat L = U coe 1 Q L ˙ 1 ˙