Description: Lemma 2 for pmatcollpwscmat . (Contributed by AV, 2-Nov-2019) (Revised by AV, 4-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pmatcollpwscmat.p | |
|
pmatcollpwscmat.c | |
||
pmatcollpwscmat.b | |
||
pmatcollpwscmat.m1 | |
||
pmatcollpwscmat.e1 | |
||
pmatcollpwscmat.x | |
||
pmatcollpwscmat.t | |
||
pmatcollpwscmat.a | |
||
pmatcollpwscmat.d | |
||
pmatcollpwscmat.u | |
||
pmatcollpwscmat.k | |
||
pmatcollpwscmat.e2 | |
||
pmatcollpwscmat.s | |
||
pmatcollpwscmat.1 | |
||
pmatcollpwscmat.m2 | |
||
Assertion | pmatcollpwscmatlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmatcollpwscmat.p | |
|
2 | pmatcollpwscmat.c | |
|
3 | pmatcollpwscmat.b | |
|
4 | pmatcollpwscmat.m1 | |
|
5 | pmatcollpwscmat.e1 | |
|
6 | pmatcollpwscmat.x | |
|
7 | pmatcollpwscmat.t | |
|
8 | pmatcollpwscmat.a | |
|
9 | pmatcollpwscmat.d | |
|
10 | pmatcollpwscmat.u | |
|
11 | pmatcollpwscmat.k | |
|
12 | pmatcollpwscmat.e2 | |
|
13 | pmatcollpwscmat.s | |
|
14 | pmatcollpwscmat.1 | |
|
15 | pmatcollpwscmat.m2 | |
|
16 | simpl | |
|
17 | simpr | |
|
18 | 17 | adantr | |
19 | simpr | |
|
20 | 19 | anim2i | |
21 | df-3an | |
|
22 | 20 21 | sylibr | |
23 | 1 2 3 12 4 14 | 1pmatscmul | |
24 | 15 23 | eqeltrid | |
25 | 22 24 | syl | |
26 | simprl | |
|
27 | 1 2 3 8 9 | decpmatcl | |
28 | 18 25 26 27 | syl3anc | |
29 | df-3an | |
|
30 | 16 28 29 | sylanbrc | |
31 | eqid | |
|
32 | 7 8 9 1 31 | mat2pmatval | |
33 | 30 32 | syl | |
34 | 18 25 26 | 3jca | |
35 | 34 | 3ad2ant1 | |
36 | 3simpc | |
|
37 | 1 2 3 | decpmate | |
38 | 35 36 37 | syl2anc | |
39 | 38 | fveq2d | |
40 | 39 | mpoeq3dva | |
41 | simp1lr | |
|
42 | simp2 | |
|
43 | simp3 | |
|
44 | 25 | 3ad2ant1 | |
45 | 2 12 3 42 43 44 | matecld | |
46 | 26 | 3ad2ant1 | |
47 | eqid | |
|
48 | 47 12 1 11 | coe1fvalcl | |
49 | 45 46 48 | syl2anc | |
50 | eqid | |
|
51 | eqid | |
|
52 | eqid | |
|
53 | eqid | |
|
54 | 11 1 50 51 52 53 31 | ply1scltm | |
55 | 41 49 54 | syl2anc | |
56 | 55 | mpoeq3dva | |
57 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | pmatcollpwscmatlem1 | |
58 | eqidd | |
|
59 | oveq12 | |
|
60 | 59 | fveq2d | |
61 | 60 | fveq1d | |
62 | 61 | oveq1d | |
63 | 62 | adantl | |
64 | simprl | |
|
65 | simprr | |
|
66 | ovexd | |
|
67 | 58 63 64 65 66 | ovmpod | |
68 | simpll | |
|
69 | 1 | ply1ring | |
70 | 69 | adantl | |
71 | 70 | adantr | |
72 | pm3.22 | |
|
73 | 72 | adantl | |
74 | eqid | |
|
75 | 74 12 1 11 | coe1fvalcl | |
76 | 73 75 | syl | |
77 | 1 10 11 12 | ply1sclcl | |
78 | 18 76 77 | syl2anc | |
79 | 68 71 78 | 3jca | |
80 | eqid | |
|
81 | 2 12 80 14 4 | scmatscmide | |
82 | 79 81 | sylan | |
83 | 57 67 82 | 3eqtr4d | |
84 | 83 | ralrimivva | |
85 | 0nn0 | |
|
86 | 85 | a1i | |
87 | 11 1 50 51 52 53 12 | ply1tmcl | |
88 | 41 49 86 87 | syl3anc | |
89 | 2 12 3 68 71 88 | matbas2d | |
90 | 1 2 3 12 4 14 | 1pmatscmul | |
91 | 68 18 78 90 | syl3anc | |
92 | 2 3 | eqmat | |
93 | 89 91 92 | syl2anc | |
94 | 84 93 | mpbird | |
95 | 56 94 | eqtrd | |
96 | 33 40 95 | 3eqtrd | |