Metamath Proof Explorer


Theorem prdslmodd

Description: The product of a family of left modules is a left module. (Contributed by Stefan O'Rear, 10-Jan-2015)

Ref Expression
Hypotheses prdslmodd.y Y=S𝑠R
prdslmodd.s φSRing
prdslmodd.i φIV
prdslmodd.rm φR:ILMod
prdslmodd.rs φyIScalarRy=S
Assertion prdslmodd φYLMod

Proof

Step Hyp Ref Expression
1 prdslmodd.y Y=S𝑠R
2 prdslmodd.s φSRing
3 prdslmodd.i φIV
4 prdslmodd.rm φR:ILMod
5 prdslmodd.rs φyIScalarRy=S
6 eqidd φBaseY=BaseY
7 eqidd φ+Y=+Y
8 4 3 fexd φRV
9 1 2 8 prdssca φS=ScalarY
10 eqidd φY=Y
11 eqidd φBaseS=BaseS
12 eqidd φ+S=+S
13 eqidd φS=S
14 eqidd φ1S=1S
15 lmodgrp aLModaGrp
16 15 ssriv LModGrp
17 fss R:ILModLModGrpR:IGrp
18 4 16 17 sylancl φR:IGrp
19 1 3 2 18 prdsgrpd φYGrp
20 eqid BaseY=BaseY
21 eqid Y=Y
22 eqid BaseS=BaseS
23 2 adantr φaBaseSbBaseYSRing
24 3 elexd φIV
25 24 adantr φaBaseSbBaseYIV
26 4 adantr φaBaseSbBaseYR:ILMod
27 simprl φaBaseSbBaseYaBaseS
28 simprr φaBaseSbBaseYbBaseY
29 5 adantlr φaBaseSbBaseYyIScalarRy=S
30 1 20 21 22 23 25 26 27 28 29 prdsvscacl φaBaseSbBaseYaYbBaseY
31 30 3impb φaBaseSbBaseYaYbBaseY
32 4 ffvelcdmda φyIRyLMod
33 32 adantlr φaBaseSbBaseYcBaseYyIRyLMod
34 simplr1 φaBaseSbBaseYcBaseYyIaBaseS
35 5 fveq2d φyIBaseScalarRy=BaseS
36 35 adantlr φaBaseSbBaseYcBaseYyIBaseScalarRy=BaseS
37 34 36 eleqtrrd φaBaseSbBaseYcBaseYyIaBaseScalarRy
38 2 ad2antrr φaBaseSbBaseYcBaseYyISRing
39 24 ad2antrr φaBaseSbBaseYcBaseYyIIV
40 4 ffnd φRFnI
41 40 ad2antrr φaBaseSbBaseYcBaseYyIRFnI
42 simplr2 φaBaseSbBaseYcBaseYyIbBaseY
43 simpr φaBaseSbBaseYcBaseYyIyI
44 1 20 38 39 41 42 43 prdsbasprj φaBaseSbBaseYcBaseYyIbyBaseRy
45 simplr3 φaBaseSbBaseYcBaseYyIcBaseY
46 1 20 38 39 41 45 43 prdsbasprj φaBaseSbBaseYcBaseYyIcyBaseRy
47 eqid BaseRy=BaseRy
48 eqid +Ry=+Ry
49 eqid ScalarRy=ScalarRy
50 eqid Ry=Ry
51 eqid BaseScalarRy=BaseScalarRy
52 47 48 49 50 51 lmodvsdi RyLModaBaseScalarRybyBaseRycyBaseRyaRyby+Rycy=aRyby+RyaRycy
53 33 37 44 46 52 syl13anc φaBaseSbBaseYcBaseYyIaRyby+Rycy=aRyby+RyaRycy
54 eqid +Y=+Y
55 1 20 38 39 41 42 45 54 43 prdsplusgfval φaBaseSbBaseYcBaseYyIb+Ycy=by+Rycy
56 55 oveq2d φaBaseSbBaseYcBaseYyIaRyb+Ycy=aRyby+Rycy
57 1 20 21 22 38 39 41 34 42 43 prdsvscafval φaBaseSbBaseYcBaseYyIaYby=aRyby
58 1 20 21 22 38 39 41 34 45 43 prdsvscafval φaBaseSbBaseYcBaseYyIaYcy=aRycy
59 57 58 oveq12d φaBaseSbBaseYcBaseYyIaYby+RyaYcy=aRyby+RyaRycy
60 53 56 59 3eqtr4d φaBaseSbBaseYcBaseYyIaRyb+Ycy=aYby+RyaYcy
61 60 mpteq2dva φaBaseSbBaseYcBaseYyIaRyb+Ycy=yIaYby+RyaYcy
62 2 adantr φaBaseSbBaseYcBaseYSRing
63 24 adantr φaBaseSbBaseYcBaseYIV
64 40 adantr φaBaseSbBaseYcBaseYRFnI
65 simpr1 φaBaseSbBaseYcBaseYaBaseS
66 19 adantr φaBaseSbBaseYcBaseYYGrp
67 simpr2 φaBaseSbBaseYcBaseYbBaseY
68 simpr3 φaBaseSbBaseYcBaseYcBaseY
69 20 54 grpcl YGrpbBaseYcBaseYb+YcBaseY
70 66 67 68 69 syl3anc φaBaseSbBaseYcBaseYb+YcBaseY
71 1 20 21 22 62 63 64 65 70 prdsvscaval φaBaseSbBaseYcBaseYaYb+Yc=yIaRyb+Ycy
72 30 3adantr3 φaBaseSbBaseYcBaseYaYbBaseY
73 2 adantr φaBaseScBaseYSRing
74 24 adantr φaBaseScBaseYIV
75 4 adantr φaBaseScBaseYR:ILMod
76 simprl φaBaseScBaseYaBaseS
77 simprr φaBaseScBaseYcBaseY
78 5 adantlr φaBaseScBaseYyIScalarRy=S
79 1 20 21 22 73 74 75 76 77 78 prdsvscacl φaBaseScBaseYaYcBaseY
80 79 3adantr2 φaBaseSbBaseYcBaseYaYcBaseY
81 1 20 62 63 64 72 80 54 prdsplusgval φaBaseSbBaseYcBaseYaYb+YaYc=yIaYby+RyaYcy
82 61 71 81 3eqtr4d φaBaseSbBaseYcBaseYaYb+Yc=aYb+YaYc
83 2 ad2antrr φaBaseSbBaseScBaseYyISRing
84 24 ad2antrr φaBaseSbBaseScBaseYyIIV
85 40 ad2antrr φaBaseSbBaseScBaseYyIRFnI
86 simplr1 φaBaseSbBaseScBaseYyIaBaseS
87 simplr3 φaBaseSbBaseScBaseYyIcBaseY
88 simpr φaBaseSbBaseScBaseYyIyI
89 1 20 21 22 83 84 85 86 87 88 prdsvscafval φaBaseSbBaseScBaseYyIaYcy=aRycy
90 simplr2 φaBaseSbBaseScBaseYyIbBaseS
91 1 20 21 22 83 84 85 90 87 88 prdsvscafval φaBaseSbBaseScBaseYyIbYcy=bRycy
92 89 91 oveq12d φaBaseSbBaseScBaseYyIaYcy+RybYcy=aRycy+RybRycy
93 32 adantlr φaBaseSbBaseScBaseYyIRyLMod
94 35 adantlr φaBaseSbBaseScBaseYyIBaseScalarRy=BaseS
95 86 94 eleqtrrd φaBaseSbBaseScBaseYyIaBaseScalarRy
96 90 94 eleqtrrd φaBaseSbBaseScBaseYyIbBaseScalarRy
97 1 20 83 84 85 87 88 prdsbasprj φaBaseSbBaseScBaseYyIcyBaseRy
98 eqid +ScalarRy=+ScalarRy
99 47 48 49 50 51 98 lmodvsdir RyLModaBaseScalarRybBaseScalarRycyBaseRya+ScalarRybRycy=aRycy+RybRycy
100 93 95 96 97 99 syl13anc φaBaseSbBaseScBaseYyIa+ScalarRybRycy=aRycy+RybRycy
101 5 adantlr φaBaseSbBaseScBaseYyIScalarRy=S
102 101 fveq2d φaBaseSbBaseScBaseYyI+ScalarRy=+S
103 102 oveqd φaBaseSbBaseScBaseYyIa+ScalarRyb=a+Sb
104 103 oveq1d φaBaseSbBaseScBaseYyIa+ScalarRybRycy=a+SbRycy
105 92 100 104 3eqtr2rd φaBaseSbBaseScBaseYyIa+SbRycy=aYcy+RybYcy
106 105 mpteq2dva φaBaseSbBaseScBaseYyIa+SbRycy=yIaYcy+RybYcy
107 2 adantr φaBaseSbBaseScBaseYSRing
108 24 adantr φaBaseSbBaseScBaseYIV
109 40 adantr φaBaseSbBaseScBaseYRFnI
110 simpr1 φaBaseSbBaseScBaseYaBaseS
111 simpr2 φaBaseSbBaseScBaseYbBaseS
112 eqid +S=+S
113 22 112 ringacl SRingaBaseSbBaseSa+SbBaseS
114 107 110 111 113 syl3anc φaBaseSbBaseScBaseYa+SbBaseS
115 simpr3 φaBaseSbBaseScBaseYcBaseY
116 1 20 21 22 107 108 109 114 115 prdsvscaval φaBaseSbBaseScBaseYa+SbYc=yIa+SbRycy
117 79 3adantr2 φaBaseSbBaseScBaseYaYcBaseY
118 4 adantr φaBaseSbBaseScBaseYR:ILMod
119 1 20 21 22 107 108 118 111 115 101 prdsvscacl φaBaseSbBaseScBaseYbYcBaseY
120 1 20 107 108 109 117 119 54 prdsplusgval φaBaseSbBaseScBaseYaYc+YbYc=yIaYcy+RybYcy
121 106 116 120 3eqtr4d φaBaseSbBaseScBaseYa+SbYc=aYc+YbYc
122 91 oveq2d φaBaseSbBaseScBaseYyIaRybYcy=aRybRycy
123 eqid ScalarRy=ScalarRy
124 47 49 50 51 123 lmodvsass RyLModaBaseScalarRybBaseScalarRycyBaseRyaScalarRybRycy=aRybRycy
125 93 95 96 97 124 syl13anc φaBaseSbBaseScBaseYyIaScalarRybRycy=aRybRycy
126 101 fveq2d φaBaseSbBaseScBaseYyIScalarRy=S
127 126 oveqd φaBaseSbBaseScBaseYyIaScalarRyb=aSb
128 127 oveq1d φaBaseSbBaseScBaseYyIaScalarRybRycy=aSbRycy
129 122 125 128 3eqtr2rd φaBaseSbBaseScBaseYyIaSbRycy=aRybYcy
130 129 mpteq2dva φaBaseSbBaseScBaseYyIaSbRycy=yIaRybYcy
131 eqid S=S
132 22 131 ringcl SRingaBaseSbBaseSaSbBaseS
133 107 110 111 132 syl3anc φaBaseSbBaseScBaseYaSbBaseS
134 1 20 21 22 107 108 109 133 115 prdsvscaval φaBaseSbBaseScBaseYaSbYc=yIaSbRycy
135 1 20 21 22 107 108 109 110 119 prdsvscaval φaBaseSbBaseScBaseYaYbYc=yIaRybYcy
136 130 134 135 3eqtr4d φaBaseSbBaseScBaseYaSbYc=aYbYc
137 5 fveq2d φyI1ScalarRy=1S
138 137 adantlr φaBaseYyI1ScalarRy=1S
139 138 oveq1d φaBaseYyI1ScalarRyRyay=1SRyay
140 32 adantlr φaBaseYyIRyLMod
141 2 ad2antrr φaBaseYyISRing
142 24 ad2antrr φaBaseYyIIV
143 40 ad2antrr φaBaseYyIRFnI
144 simplr φaBaseYyIaBaseY
145 simpr φaBaseYyIyI
146 1 20 141 142 143 144 145 prdsbasprj φaBaseYyIayBaseRy
147 eqid 1ScalarRy=1ScalarRy
148 47 49 50 147 lmodvs1 RyLModayBaseRy1ScalarRyRyay=ay
149 140 146 148 syl2anc φaBaseYyI1ScalarRyRyay=ay
150 139 149 eqtr3d φaBaseYyI1SRyay=ay
151 150 mpteq2dva φaBaseYyI1SRyay=yIay
152 2 adantr φaBaseYSRing
153 24 adantr φaBaseYIV
154 40 adantr φaBaseYRFnI
155 eqid 1S=1S
156 22 155 ringidcl SRing1SBaseS
157 2 156 syl φ1SBaseS
158 157 adantr φaBaseY1SBaseS
159 simpr φaBaseYaBaseY
160 1 20 21 22 152 153 154 158 159 prdsvscaval φaBaseY1SYa=yI1SRyay
161 1 20 152 153 154 159 prdsbasfn φaBaseYaFnI
162 dffn5 aFnIa=yIay
163 161 162 sylib φaBaseYa=yIay
164 151 160 163 3eqtr4d φaBaseY1SYa=a
165 6 7 9 10 11 12 13 14 2 19 31 82 121 136 164 islmodd φYLMod