Metamath Proof Explorer


Theorem ptuncnv

Description: Exhibit the converse function of the map G which joins two product topologies on disjoint index sets. (Contributed by Mario Carneiro, 8-Feb-2015) (Proof shortened by Mario Carneiro, 23-Aug-2015)

Ref Expression
Hypotheses ptunhmeo.x X=K
ptunhmeo.y Y=L
ptunhmeo.j J=𝑡F
ptunhmeo.k K=𝑡FA
ptunhmeo.l L=𝑡FB
ptunhmeo.g G=xX,yYxy
ptunhmeo.c φCV
ptunhmeo.f φF:CTop
ptunhmeo.u φC=AB
ptunhmeo.i φAB=
Assertion ptuncnv φG-1=zJzAzB

Proof

Step Hyp Ref Expression
1 ptunhmeo.x X=K
2 ptunhmeo.y Y=L
3 ptunhmeo.j J=𝑡F
4 ptunhmeo.k K=𝑡FA
5 ptunhmeo.l L=𝑡FB
6 ptunhmeo.g G=xX,yYxy
7 ptunhmeo.c φCV
8 ptunhmeo.f φF:CTop
9 ptunhmeo.u φC=AB
10 ptunhmeo.i φAB=
11 vex xV
12 vex yV
13 11 12 op1std w=xy1stw=x
14 11 12 op2ndd w=xy2ndw=y
15 13 14 uneq12d w=xy1stw2ndw=xy
16 15 mpompt wX×Y1stw2ndw=xX,yYxy
17 6 16 eqtr4i G=wX×Y1stw2ndw
18 xp1st wX×Y1stwX
19 18 adantl φwX×Y1stwX
20 ixpeq2 kAFAk=FkkAFAk=kAFk
21 fvres kAFAk=Fk
22 21 unieqd kAFAk=Fk
23 20 22 mprg kAFAk=kAFk
24 ssun1 AAB
25 24 9 sseqtrrid φAC
26 7 25 ssexd φAV
27 8 25 fssresd φFA:ATop
28 4 ptuni AVFA:ATopkAFAk=K
29 26 27 28 syl2anc φkAFAk=K
30 23 29 eqtr3id φkAFk=K
31 30 1 eqtr4di φkAFk=X
32 31 adantr φwX×YkAFk=X
33 19 32 eleqtrrd φwX×Y1stwkAFk
34 xp2nd wX×Y2ndwY
35 34 adantl φwX×Y2ndwY
36 9 eqcomd φAB=C
37 uneqdifeq ACAB=AB=CCA=B
38 25 10 37 syl2anc φAB=CCA=B
39 36 38 mpbid φCA=B
40 39 ixpeq1d φkCAFk=kBFk
41 ixpeq2 kBFBk=FkkBFBk=kBFk
42 fvres kBFBk=Fk
43 42 unieqd kBFBk=Fk
44 41 43 mprg kBFBk=kBFk
45 ssun2 BAB
46 45 9 sseqtrrid φBC
47 7 46 ssexd φBV
48 8 46 fssresd φFB:BTop
49 5 ptuni BVFB:BTopkBFBk=L
50 47 48 49 syl2anc φkBFBk=L
51 44 50 eqtr3id φkBFk=L
52 51 2 eqtr4di φkBFk=Y
53 40 52 eqtrd φkCAFk=Y
54 53 adantr φwX×YkCAFk=Y
55 35 54 eleqtrrd φwX×Y2ndwkCAFk
56 25 adantr φwX×YAC
57 undifixp 1stwkAFk2ndwkCAFkAC1stw2ndwkCFk
58 33 55 56 57 syl3anc φwX×Y1stw2ndwkCFk
59 3 ptuni CVF:CTopkCFk=J
60 7 8 59 syl2anc φkCFk=J
61 60 adantr φwX×YkCFk=J
62 58 61 eleqtrd φwX×Y1stw2ndwJ
63 25 adantr φzJAC
64 60 eleq2d φzkCFkzJ
65 64 biimpar φzJzkCFk
66 resixp ACzkCFkzAkAFk
67 63 65 66 syl2anc φzJzAkAFk
68 31 adantr φzJkAFk=X
69 67 68 eleqtrd φzJzAX
70 46 adantr φzJBC
71 resixp BCzkCFkzBkBFk
72 70 65 71 syl2anc φzJzBkBFk
73 52 adantr φzJkBFk=Y
74 72 73 eleqtrd φzJzBY
75 69 74 opelxpd φzJzAzBX×Y
76 eqop wX×Yw=zAzB1stw=zA2ndw=zB
77 76 ad2antrl φwX×YzJw=zAzB1stw=zA2ndw=zB
78 65 adantrl φwX×YzJzkCFk
79 ixpfn zkCFkzFnC
80 fnresdm zFnCzC=z
81 78 79 80 3syl φwX×YzJzC=z
82 9 reseq2d φzC=zAB
83 82 adantr φwX×YzJzC=zAB
84 81 83 eqtr3d φwX×YzJz=zAB
85 resundi zAB=zAzB
86 84 85 eqtrdi φwX×YzJz=zAzB
87 uneq12 1stw=zA2ndw=zB1stw2ndw=zAzB
88 87 eqeq2d 1stw=zA2ndw=zBz=1stw2ndwz=zAzB
89 86 88 syl5ibrcom φwX×YzJ1stw=zA2ndw=zBz=1stw2ndw
90 ixpfn 1stwkAFk1stwFnA
91 33 90 syl φwX×Y1stwFnA
92 91 adantrr φwX×YzJ1stwFnA
93 dffn2 1stwFnA1stw:AV
94 92 93 sylib φwX×YzJ1stw:AV
95 52 adantr φwX×YkBFk=Y
96 35 95 eleqtrrd φwX×Y2ndwkBFk
97 ixpfn 2ndwkBFk2ndwFnB
98 96 97 syl φwX×Y2ndwFnB
99 98 adantrr φwX×YzJ2ndwFnB
100 dffn2 2ndwFnB2ndw:BV
101 99 100 sylib φwX×YzJ2ndw:BV
102 res0 1stw=
103 res0 2ndw=
104 102 103 eqtr4i 1stw=2ndw
105 10 adantr φwX×YzJAB=
106 105 reseq2d φwX×YzJ1stwAB=1stw
107 105 reseq2d φwX×YzJ2ndwAB=2ndw
108 104 106 107 3eqtr4a φwX×YzJ1stwAB=2ndwAB
109 fresaunres1 1stw:AV2ndw:BV1stwAB=2ndwAB1stw2ndwA=1stw
110 94 101 108 109 syl3anc φwX×YzJ1stw2ndwA=1stw
111 110 eqcomd φwX×YzJ1stw=1stw2ndwA
112 fresaunres2 1stw:AV2ndw:BV1stwAB=2ndwAB1stw2ndwB=2ndw
113 94 101 108 112 syl3anc φwX×YzJ1stw2ndwB=2ndw
114 113 eqcomd φwX×YzJ2ndw=1stw2ndwB
115 111 114 jca φwX×YzJ1stw=1stw2ndwA2ndw=1stw2ndwB
116 reseq1 z=1stw2ndwzA=1stw2ndwA
117 116 eqeq2d z=1stw2ndw1stw=zA1stw=1stw2ndwA
118 reseq1 z=1stw2ndwzB=1stw2ndwB
119 118 eqeq2d z=1stw2ndw2ndw=zB2ndw=1stw2ndwB
120 117 119 anbi12d z=1stw2ndw1stw=zA2ndw=zB1stw=1stw2ndwA2ndw=1stw2ndwB
121 115 120 syl5ibrcom φwX×YzJz=1stw2ndw1stw=zA2ndw=zB
122 89 121 impbid φwX×YzJ1stw=zA2ndw=zBz=1stw2ndw
123 77 122 bitrd φwX×YzJw=zAzBz=1stw2ndw
124 17 62 75 123 f1ocnv2d φG:X×Y1-1 ontoJG-1=zJzAzB
125 124 simprd φG-1=zJzAzB