Metamath Proof Explorer


Theorem pwfseqlem4

Description: Lemma for pwfseq . Derive a final contradiction from the function F in pwfseqlem3 . Applying fpwwe2 to it, we get a certain maximal well-ordered subset Z , but the defining property ( Z F ( WZ ) ) e. Z contradicts our assumption on F , so we are reduced to the case of Z finite. This too is a contradiction, though, because Z and its preimage under ( WZ ) are distinct sets of the same cardinality and in a subset relation, which is impossible for finite sets. (Contributed by Mario Carneiro, 31-May-2015) (Proof shortened by Matthew House, 10-Sep-2025)

Ref Expression
Hypotheses pwfseqlem4.g φ G : 𝒫 A 1-1 n ω A n
pwfseqlem4.x φ X A
pwfseqlem4.h φ H : ω 1-1 onto X
pwfseqlem4.ps ψ x A r x × x r We x ω x
pwfseqlem4.k φ ψ K : n ω x n 1-1 x
pwfseqlem4.d D = G w x | K -1 w ran G ¬ w G -1 K -1 w
pwfseqlem4.f F = x V , r V if x Fin H card x D z ω | ¬ D z x
pwfseqlem4.w W = a s | a A s a × a s We a b a [˙ s -1 b / v]˙ v F s v × v = b
pwfseqlem4.z Z = dom W
Assertion pwfseqlem4 ¬ φ

Proof

Step Hyp Ref Expression
1 pwfseqlem4.g φ G : 𝒫 A 1-1 n ω A n
2 pwfseqlem4.x φ X A
3 pwfseqlem4.h φ H : ω 1-1 onto X
4 pwfseqlem4.ps ψ x A r x × x r We x ω x
5 pwfseqlem4.k φ ψ K : n ω x n 1-1 x
6 pwfseqlem4.d D = G w x | K -1 w ran G ¬ w G -1 K -1 w
7 pwfseqlem4.f F = x V , r V if x Fin H card x D z ω | ¬ D z x
8 pwfseqlem4.w W = a s | a A s a × a s We a b a [˙ s -1 b / v]˙ v F s v × v = b
9 pwfseqlem4.z Z = dom W
10 eqid Z = Z
11 eqid W Z = W Z
12 10 11 pm3.2i Z = Z W Z = W Z
13 omex ω V
14 ovex A n V
15 13 14 iunex n ω A n V
16 f1dmex G : 𝒫 A 1-1 n ω A n n ω A n V 𝒫 A V
17 1 15 16 sylancl φ 𝒫 A V
18 pwexb A V 𝒫 A V
19 17 18 sylibr φ A V
20 1 2 3 4 5 6 7 pwfseqlem4a φ a A s a × a s We a a F s A
21 8 19 20 9 fpwwe2 φ Z W W Z Z F W Z Z Z = Z W Z = W Z
22 12 21 mpbiri φ Z W W Z Z F W Z Z
23 22 simpld φ Z W W Z
24 8 19 fpwwe2lem2 φ Z W W Z Z A W Z Z × Z W Z We Z b Z [˙ W Z -1 b / v]˙ v F W Z v × v = b
25 23 24 mpbid φ Z A W Z Z × Z W Z We Z b Z [˙ W Z -1 b / v]˙ v F W Z v × v = b
26 id Z A W Z Z × Z W Z We Z Z A W Z Z × Z W Z We Z
27 26 3expa Z A W Z Z × Z W Z We Z Z A W Z Z × Z W Z We Z
28 27 adantrr Z A W Z Z × Z W Z We Z b Z [˙ W Z -1 b / v]˙ v F W Z v × v = b Z A W Z Z × Z W Z We Z
29 25 28 syl φ Z A W Z Z × Z W Z We Z
30 22 simprd φ Z F W Z Z
31 25 simpld φ Z A W Z Z × Z
32 31 simpld φ Z A
33 19 32 ssexd φ Z V
34 fvexd φ W Z V
35 simpl a = Z s = W Z a = Z
36 35 sseq1d a = Z s = W Z a A Z A
37 simpr a = Z s = W Z s = W Z
38 35 sqxpeqd a = Z s = W Z a × a = Z × Z
39 37 38 sseq12d a = Z s = W Z s a × a W Z Z × Z
40 37 35 weeq12d a = Z s = W Z s We a W Z We Z
41 36 39 40 3anbi123d a = Z s = W Z a A s a × a s We a Z A W Z Z × Z W Z We Z
42 oveq12 a = Z s = W Z a F s = Z F W Z
43 42 35 eleq12d a = Z s = W Z a F s a Z F W Z Z
44 35 breq1d a = Z s = W Z a ω Z ω
45 43 44 imbi12d a = Z s = W Z a F s a a ω Z F W Z Z Z ω
46 41 45 imbi12d a = Z s = W Z a A s a × a s We a a F s a a ω Z A W Z Z × Z W Z We Z Z F W Z Z Z ω
47 omelon ω On
48 onenon ω On ω dom card
49 47 48 ax-mp ω dom card
50 simpr3 φ a A s a × a s We a s We a
51 50 19.8ad φ a A s a × a s We a s s We a
52 ween a dom card s s We a
53 51 52 sylibr φ a A s a × a s We a a dom card
54 domtri2 ω dom card a dom card ω a ¬ a ω
55 49 53 54 sylancr φ a A s a × a s We a ω a ¬ a ω
56 nfv r φ a A s a × a s We a ω a
57 nfcv _ r a
58 nfmpo2 _ r x V , r V if x Fin H card x D z ω | ¬ D z x
59 7 58 nfcxfr _ r F
60 nfcv _ r s
61 57 59 60 nfov _ r a F s
62 61 nfel1 r a F s A a
63 56 62 nfim r φ a A s a × a s We a ω a a F s A a
64 sseq1 r = s r a × a s a × a
65 weeq1 r = s r We a s We a
66 64 65 3anbi23d r = s a A r a × a r We a a A s a × a s We a
67 66 anbi1d r = s a A r a × a r We a ω a a A s a × a s We a ω a
68 67 anbi2d r = s φ a A r a × a r We a ω a φ a A s a × a s We a ω a
69 oveq2 r = s a F r = a F s
70 69 eleq1d r = s a F r A a a F s A a
71 68 70 imbi12d r = s φ a A r a × a r We a ω a a F r A a φ a A s a × a s We a ω a a F s A a
72 nfv x φ a A r a × a r We a ω a
73 nfcv _ x a
74 nfmpo1 _ x x V , r V if x Fin H card x D z ω | ¬ D z x
75 7 74 nfcxfr _ x F
76 nfcv _ x r
77 73 75 76 nfov _ x a F r
78 77 nfel1 x a F r A a
79 72 78 nfim x φ a A r a × a r We a ω a a F r A a
80 sseq1 x = a x A a A
81 xpeq12 x = a x = a x × x = a × a
82 81 anidms x = a x × x = a × a
83 82 sseq2d x = a r x × x r a × a
84 weeq2 x = a r We x r We a
85 80 83 84 3anbi123d x = a x A r x × x r We x a A r a × a r We a
86 breq2 x = a ω x ω a
87 85 86 anbi12d x = a x A r x × x r We x ω x a A r a × a r We a ω a
88 4 87 bitrid x = a ψ a A r a × a r We a ω a
89 88 anbi2d x = a φ ψ φ a A r a × a r We a ω a
90 oveq1 x = a x F r = a F r
91 difeq2 x = a A x = A a
92 90 91 eleq12d x = a x F r A x a F r A a
93 89 92 imbi12d x = a φ ψ x F r A x φ a A r a × a r We a ω a a F r A a
94 1 2 3 4 5 6 7 pwfseqlem3 φ ψ x F r A x
95 79 93 94 chvarfv φ a A r a × a r We a ω a a F r A a
96 63 71 95 chvarfv φ a A s a × a s We a ω a a F s A a
97 96 eldifbd φ a A s a × a s We a ω a ¬ a F s a
98 97 expr φ a A s a × a s We a ω a ¬ a F s a
99 55 98 sylbird φ a A s a × a s We a ¬ a ω ¬ a F s a
100 99 con4d φ a A s a × a s We a a F s a a ω
101 100 ex φ a A s a × a s We a a F s a a ω
102 33 34 46 101 vtocl2d φ Z A W Z Z × Z W Z We Z Z F W Z Z Z ω
103 29 30 102 mp2d φ Z ω
104 isfinite Z Fin Z ω
105 103 104 sylibr φ Z Fin
106 fvex W Z V
107 1 2 3 4 5 6 7 pwfseqlem2 Z Fin W Z V Z F W Z = H card Z
108 105 106 107 sylancl φ Z F W Z = H card Z
109 108 30 eqeltrrd φ H card Z Z
110 8 19 23 fpwwe2lem3 φ H card Z Z W Z -1 H card Z F W Z W Z -1 H card Z × W Z -1 H card Z = H card Z
111 109 110 mpdan φ W Z -1 H card Z F W Z W Z -1 H card Z × W Z -1 H card Z = H card Z
112 cnvimass W Z -1 H card Z dom W Z
113 31 simprd φ W Z Z × Z
114 dmss W Z Z × Z dom W Z dom Z × Z
115 113 114 syl φ dom W Z dom Z × Z
116 dmxpss dom Z × Z Z
117 115 116 sstrdi φ dom W Z Z
118 112 117 sstrid φ W Z -1 H card Z Z
119 105 118 ssfid φ W Z -1 H card Z Fin
120 106 inex1 W Z W Z -1 H card Z × W Z -1 H card Z V
121 1 2 3 4 5 6 7 pwfseqlem2 W Z -1 H card Z Fin W Z W Z -1 H card Z × W Z -1 H card Z V W Z -1 H card Z F W Z W Z -1 H card Z × W Z -1 H card Z = H card W Z -1 H card Z
122 119 120 121 sylancl φ W Z -1 H card Z F W Z W Z -1 H card Z × W Z -1 H card Z = H card W Z -1 H card Z
123 111 122 eqtr3d φ H card Z = H card W Z -1 H card Z
124 f1of1 H : ω 1-1 onto X H : ω 1-1 X
125 3 124 syl φ H : ω 1-1 X
126 ficardom Z Fin card Z ω
127 105 126 syl φ card Z ω
128 ficardom W Z -1 H card Z Fin card W Z -1 H card Z ω
129 119 128 syl φ card W Z -1 H card Z ω
130 f1fveq H : ω 1-1 X card Z ω card W Z -1 H card Z ω H card Z = H card W Z -1 H card Z card Z = card W Z -1 H card Z
131 125 127 129 130 syl12anc φ H card Z = H card W Z -1 H card Z card Z = card W Z -1 H card Z
132 123 131 mpbid φ card Z = card W Z -1 H card Z
133 132 eqcomd φ card W Z -1 H card Z = card Z
134 finnum W Z -1 H card Z Fin W Z -1 H card Z dom card
135 119 134 syl φ W Z -1 H card Z dom card
136 finnum Z Fin Z dom card
137 105 136 syl φ Z dom card
138 carden2 W Z -1 H card Z dom card Z dom card card W Z -1 H card Z = card Z W Z -1 H card Z Z
139 135 137 138 syl2anc φ card W Z -1 H card Z = card Z W Z -1 H card Z Z
140 133 139 mpbid φ W Z -1 H card Z Z
141 dfpss2 W Z -1 H card Z Z W Z -1 H card Z Z ¬ W Z -1 H card Z = Z
142 141 baib W Z -1 H card Z Z W Z -1 H card Z Z ¬ W Z -1 H card Z = Z
143 118 142 syl φ W Z -1 H card Z Z ¬ W Z -1 H card Z = Z
144 php3 Z Fin W Z -1 H card Z Z W Z -1 H card Z Z
145 sdomnen W Z -1 H card Z Z ¬ W Z -1 H card Z Z
146 144 145 syl Z Fin W Z -1 H card Z Z ¬ W Z -1 H card Z Z
147 146 ex Z Fin W Z -1 H card Z Z ¬ W Z -1 H card Z Z
148 105 147 syl φ W Z -1 H card Z Z ¬ W Z -1 H card Z Z
149 143 148 sylbird φ ¬ W Z -1 H card Z = Z ¬ W Z -1 H card Z Z
150 140 149 mt4d φ W Z -1 H card Z = Z
151 109 150 eleqtrrd φ H card Z W Z -1 H card Z
152 fvex H card Z V
153 152 eliniseg H card Z V H card Z W Z -1 H card Z H card Z W Z H card Z
154 152 153 ax-mp H card Z W Z -1 H card Z H card Z W Z H card Z
155 151 154 sylib φ H card Z W Z H card Z
156 25 simprd φ W Z We Z b Z [˙ W Z -1 b / v]˙ v F W Z v × v = b
157 156 simpld φ W Z We Z
158 weso W Z We Z W Z Or Z
159 157 158 syl φ W Z Or Z
160 sonr W Z Or Z H card Z Z ¬ H card Z W Z H card Z
161 159 109 160 syl2anc φ ¬ H card Z W Z H card Z
162 155 161 pm2.65i ¬ φ