Metamath Proof Explorer


Theorem pwp1fsum

Description: The n-th power of a number increased by 1 expressed by a product with a finite sum. (Contributed by AV, 15-Aug-2021)

Ref Expression
Hypotheses pwp1fsum.a φA
pwp1fsum.n φN
Assertion pwp1fsum φ1N1AN+1=A+1k=0N11kAk

Proof

Step Hyp Ref Expression
1 pwp1fsum.a φA
2 pwp1fsum.n φN
3 1cnd φ1
4 fzfid φ0N1Fin
5 neg1cn 1
6 5 a1i φk0N11
7 elfznn0 k0N1k0
8 7 adantl φk0N1k0
9 6 8 expcld φk0N11k
10 1 adantr φk0N1A
11 10 8 expcld φk0N1Ak
12 9 11 mulcld φk0N11kAk
13 4 12 fsumcl φk=0N11kAk
14 1 3 13 adddird φA+1k=0N11kAk=Ak=0N11kAk+1k=0N11kAk
15 4 1 12 fsummulc2 φAk=0N11kAk=k=0N1A1kAk
16 10 12 mulcomd φk0N1A1kAk=1kAkA
17 9 11 10 mulassd φk0N11kAkA=1kAkA
18 expp1 Ak0Ak+1=AkA
19 1 7 18 syl2an φk0N1Ak+1=AkA
20 19 eqcomd φk0N1AkA=Ak+1
21 20 oveq2d φk0N11kAkA=1kAk+1
22 16 17 21 3eqtrd φk0N1A1kAk=1kAk+1
23 22 sumeq2dv φk=0N1A1kAk=k=0N11kAk+1
24 15 23 eqtrd φAk=0N11kAk=k=0N11kAk+1
25 13 mullidd φ1k=0N11kAk=k=0N11kAk
26 24 25 oveq12d φAk=0N11kAk+1k=0N11kAk=k=0N11kAk+1+k=0N11kAk
27 1zzd φ1
28 0zd φ0
29 nnz NN
30 peano2zm NN1
31 29 30 syl NN1
32 2 31 syl φN1
33 peano2nn0 k0k+10
34 7 33 syl k0N1k+10
35 34 adantl φk0N1k+10
36 10 35 expcld φk0N1Ak+1
37 9 36 mulcld φk0N11kAk+1
38 oveq2 k=l11k=1l1
39 oveq1 k=l1k+1=l-1+1
40 39 oveq2d k=l1Ak+1=Al-1+1
41 38 40 oveq12d k=l11kAk+1=1l1Al-1+1
42 27 28 32 37 41 fsumshft φk=0N11kAk+1=l=0+1N-1+11l1Al-1+1
43 elfzelz l0+1N-1+1l
44 43 zcnd l0+1N-1+1l
45 44 adantl φl0+1N-1+1l
46 npcan1 ll-1+1=l
47 45 46 syl φl0+1N-1+1l-1+1=l
48 47 oveq2d φl0+1N-1+1Al-1+1=Al
49 48 oveq2d φl0+1N-1+11l1Al-1+1=1l1Al
50 49 sumeq2dv φl=0+1N-1+11l1Al-1+1=l=0+1N-1+11l1Al
51 2 nncnd φN
52 npcan1 NN-1+1=N
53 51 52 syl φN-1+1=N
54 0p1e1 0+1=1
55 54 fveq2i 0+1=1
56 nnuz =1
57 55 56 eqtr4i 0+1=
58 57 a1i φ0+1=
59 2 53 58 3eltr4d φN-1+10+1
60 54 oveq1i 0+1N-1+1=1N-1+1
61 60 eleq2i l0+1N-1+1l1N-1+1
62 5 a1i φl1
63 nnm1nn0 ll10
64 63 adantl φll10
65 62 64 expcld φl1l1
66 1 adantr φlA
67 nnnn0 ll0
68 67 adantl φll0
69 66 68 expcld φlAl
70 65 69 mulcld φl1l1Al
71 70 expcom lφ1l1Al
72 elfznn l1N-1+1l
73 71 72 syl11 φl1N-1+11l1Al
74 61 73 biimtrid φl0+1N-1+11l1Al
75 74 imp φl0+1N-1+11l1Al
76 oveq1 l=N-1+1l1=N1+1-1
77 76 oveq2d l=N-1+11l1=1N1+1-1
78 oveq2 l=N-1+1Al=AN-1+1
79 77 78 oveq12d l=N-1+11l1Al=1N1+1-1AN-1+1
80 59 75 79 fsumm1 φl=0+1N-1+11l1Al=l=0+1N1+1-11l1Al+1N1+1-1AN-1+1
81 32 zcnd φN1
82 pncan1 N1N1+1-1=N1
83 81 82 syl φN1+1-1=N1
84 83 oveq2d φ0+1N1+1-1=0+1N1
85 84 sumeq1d φl=0+1N1+1-11l1Al=l=0+1N11l1Al
86 oveq1 l=kl1=k1
87 86 oveq2d l=k1l1=1k1
88 oveq2 l=kAl=Ak
89 87 88 oveq12d l=k1l1Al=1k1Ak
90 89 cbvsumv l=0+1N11l1Al=k=0+1N11k1Ak
91 85 90 eqtrdi φl=0+1N1+1-11l1Al=k=0+1N11k1Ak
92 83 oveq2d φ1N1+1-1=1N1
93 53 oveq2d φAN-1+1=AN
94 92 93 oveq12d φ1N1+1-1AN-1+1=1N1AN
95 91 94 oveq12d φl=0+1N1+1-11l1Al+1N1+1-1AN-1+1=k=0+1N11k1Ak+1N1AN
96 80 95 eqtrd φl=0+1N-1+11l1Al=k=0+1N11k1Ak+1N1AN
97 42 50 96 3eqtrd φk=0N11kAk+1=k=0+1N11k1Ak+1N1AN
98 nnm1nn0 NN10
99 elnn0uz N10N10
100 98 99 sylib NN10
101 2 100 syl φN10
102 oveq2 k=01k=10
103 exp0 110=1
104 5 103 ax-mp 10=1
105 102 104 eqtrdi k=01k=1
106 oveq2 k=0Ak=A0
107 105 106 oveq12d k=01kAk=1A0
108 101 12 107 fsum1p φk=0N11kAk=1A0+k=0+1N11kAk
109 1 exp0d φA0=1
110 109 oveq2d φ1A0=11
111 1t1e1 11=1
112 110 111 eqtrdi φ1A0=1
113 112 oveq1d φ1A0+k=0+1N11kAk=1+k=0+1N11kAk
114 fzfid φ0+1N1Fin
115 elfznn k1N1k
116 5 a1i φk1
117 nnnn0 kk0
118 117 adantl φkk0
119 116 118 expcld φk1k
120 1 adantr φkA
121 120 118 expcld φkAk
122 119 121 mulcld φk1kAk
123 122 expcom kφ1kAk
124 115 123 syl k1N1φ1kAk
125 54 oveq1i 0+1N1=1N1
126 124 125 eleq2s k0+1N1φ1kAk
127 126 impcom φk0+1N11kAk
128 114 127 fsumcl φk=0+1N11kAk
129 3 128 addcomd φ1+k=0+1N11kAk=k=0+1N11kAk+1
130 108 113 129 3eqtrd φk=0N11kAk=k=0+1N11kAk+1
131 97 130 oveq12d φk=0N11kAk+1+k=0N11kAk=k=0+1N11k1Ak+1N1AN+k=0+1N11kAk+1
132 nnm1nn0 kk10
133 132 adantl φkk10
134 116 133 expcld φk1k1
135 134 121 mulcld φk1k1Ak
136 135 expcom kφ1k1Ak
137 115 136 syl k1N1φ1k1Ak
138 137 125 eleq2s k0+1N1φ1k1Ak
139 138 impcom φk0+1N11k1Ak
140 114 139 fsumcl φk=0+1N11k1Ak
141 5 a1i φ1
142 2 98 syl φN10
143 141 142 expcld φ1N1
144 2 nnnn0d φN0
145 1 144 expcld φAN
146 143 145 mulcld φ1N1AN
147 140 146 addcld φk=0+1N11k1Ak+1N1AN
148 147 128 3 addassd φk=0+1N11k1Ak+1N1AN+k=0+1N11kAk+1=k=0+1N11k1Ak+1N1AN+k=0+1N11kAk+1
149 140 146 addcomd φk=0+1N11k1Ak+1N1AN=1N1AN+k=0+1N11k1Ak
150 149 oveq1d φk=0+1N11k1Ak+1N1AN+k=0+1N11kAk=1N1AN+k=0+1N11k1Ak+k=0+1N11kAk
151 146 140 128 addassd φ1N1AN+k=0+1N11k1Ak+k=0+1N11kAk=1N1AN+k=0+1N11k1Ak+k=0+1N11kAk
152 nncn kk
153 npcan1 kk-1+1=k
154 152 153 syl kk-1+1=k
155 154 eqcomd kk=k-1+1
156 155 oveq2d k1k=1k-1+1
157 5 a1i k1
158 157 132 expp1d k1k-1+1=1k1-1
159 157 132 expcld k1k1
160 159 157 mulcomd k1k1-1=-11k1
161 156 158 160 3eqtrd k1k=-11k1
162 161 oveq2d k1k1+1k=1k1+-11k1
163 159 mulm1d k-11k1=1k1
164 163 oveq2d k1k1+-11k1=1k1+1k1
165 159 negidd k1k1+1k1=0
166 162 164 165 3eqtrd k1k1+1k=0
167 166 adantl φk1k1+1k=0
168 167 oveq1d φk1k1+1kAk=0Ak
169 134 119 121 adddird φk1k1+1kAk=1k1Ak+1kAk
170 121 mul02d φk0Ak=0
171 168 169 170 3eqtr3d φk1k1Ak+1kAk=0
172 171 expcom kφ1k1Ak+1kAk=0
173 115 172 syl k1N1φ1k1Ak+1kAk=0
174 173 125 eleq2s k0+1N1φ1k1Ak+1kAk=0
175 174 impcom φk0+1N11k1Ak+1kAk=0
176 175 sumeq2dv φk=0+1N11k1Ak+1kAk=k=0+1N10
177 114 139 127 fsumadd φk=0+1N11k1Ak+1kAk=k=0+1N11k1Ak+k=0+1N11kAk
178 114 olcd φ0+1N110+1N1Fin
179 sumz 0+1N110+1N1Fink=0+1N10=0
180 178 179 syl φk=0+1N10=0
181 176 177 180 3eqtr3d φk=0+1N11k1Ak+k=0+1N11kAk=0
182 181 oveq2d φ1N1AN+k=0+1N11k1Ak+k=0+1N11kAk=1N1AN+0
183 146 addridd φ1N1AN+0=1N1AN
184 182 183 eqtrd φ1N1AN+k=0+1N11k1Ak+k=0+1N11kAk=1N1AN
185 150 151 184 3eqtrd φk=0+1N11k1Ak+1N1AN+k=0+1N11kAk=1N1AN
186 185 oveq1d φk=0+1N11k1Ak+1N1AN+k=0+1N11kAk+1=1N1AN+1
187 131 148 186 3eqtr2d φk=0N11kAk+1+k=0N11kAk=1N1AN+1
188 14 26 187 3eqtrd φA+1k=0N11kAk=1N1AN+1
189 188 eqcomd φ1N1AN+1=A+1k=0N11kAk