Step |
Hyp |
Ref |
Expression |
1 |
|
pwrssmgc.1 |
|
2 |
|
pwrssmgc.2 |
|
3 |
|
pwrssmgc.3 |
|
4 |
|
pwrssmgc.4 |
|
5 |
|
pwrssmgc.5 |
|
6 |
|
pwrssmgc.6 |
|
7 |
|
pwrssmgc.7 |
|
8 |
5
|
adantr |
|
9 |
|
cnvimass |
|
10 |
9 7
|
fssdm |
|
11 |
10
|
adantr |
|
12 |
8 11
|
sselpwd |
|
13 |
12 1
|
fmptd |
|
14 |
|
pwexg |
|
15 |
3
|
ipobas |
|
16 |
6 14 15
|
3syl |
|
17 |
|
pwexg |
|
18 |
4
|
ipobas |
|
19 |
5 17 18
|
3syl |
|
20 |
16 19
|
feq23d |
|
21 |
13 20
|
mpbid |
|
22 |
6
|
adantr |
|
23 |
|
ssrab2 |
|
24 |
23
|
a1i |
|
25 |
22 24
|
sselpwd |
|
26 |
25 2
|
fmptd |
|
27 |
19 16
|
feq23d |
|
28 |
26 27
|
mpbid |
|
29 |
21 28
|
jca |
|
30 |
|
sneq |
|
31 |
30
|
imaeq2d |
|
32 |
31
|
sseq1d |
|
33 |
|
simplr |
|
34 |
16
|
ad2antrr |
|
35 |
33 34
|
eleqtrrd |
|
36 |
35
|
adantr |
|
37 |
36
|
elpwid |
|
38 |
37
|
sselda |
|
39 |
7
|
ffund |
|
40 |
39
|
ad4antr |
|
41 |
|
snssi |
|
42 |
41
|
adantl |
|
43 |
|
sspreima |
|
44 |
40 42 43
|
syl2anc |
|
45 |
|
simplr |
|
46 |
44 45
|
sstrd |
|
47 |
32 38 46
|
elrabd |
|
48 |
47
|
ex |
|
49 |
48
|
ssrdv |
|
50 |
|
simplr |
|
51 |
7
|
ffnd |
|
52 |
51
|
ad4antr |
|
53 |
|
simpr |
|
54 |
|
elpreima |
|
55 |
54
|
biimpa |
|
56 |
52 53 55
|
syl2anc |
|
57 |
56
|
simprd |
|
58 |
50 57
|
sseldd |
|
59 |
|
sneq |
|
60 |
59
|
imaeq2d |
|
61 |
60
|
sseq1d |
|
62 |
61
|
elrab |
|
63 |
62
|
simprbi |
|
64 |
58 63
|
syl |
|
65 |
56
|
simpld |
|
66 |
|
eqidd |
|
67 |
|
fniniseg |
|
68 |
67
|
biimpar |
|
69 |
52 65 66 68
|
syl12anc |
|
70 |
64 69
|
sseldd |
|
71 |
70
|
ex |
|
72 |
71
|
ssrdv |
|
73 |
49 72
|
impbida |
|
74 |
|
simpr |
|
75 |
74
|
imaeq2d |
|
76 |
7 5
|
fexd |
|
77 |
|
cnvexg |
|
78 |
|
imaexg |
|
79 |
76 77 78
|
3syl |
|
80 |
79
|
ad2antrr |
|
81 |
1 75 35 80
|
fvmptd2 |
|
82 |
81
|
sseq1d |
|
83 |
|
simpr |
|
84 |
83
|
sseq2d |
|
85 |
84
|
rabbidv |
|
86 |
|
simpr |
|
87 |
5 17
|
syl |
|
88 |
87
|
ad2antrr |
|
89 |
88 18
|
syl |
|
90 |
86 89
|
eleqtrrd |
|
91 |
6
|
ad2antrr |
|
92 |
|
ssrab2 |
|
93 |
92
|
a1i |
|
94 |
91 93
|
sselpwd |
|
95 |
2 85 90 94
|
fvmptd2 |
|
96 |
95
|
sseq2d |
|
97 |
73 82 96
|
3bitr4d |
|
98 |
13
|
ad2antrr |
|
99 |
98 35
|
ffvelrnd |
|
100 |
|
eqid |
|
101 |
4 100
|
ipole |
|
102 |
88 99 90 101
|
syl3anc |
|
103 |
6 14
|
syl |
|
104 |
103
|
ad2antrr |
|
105 |
26
|
ad2antrr |
|
106 |
105 90
|
ffvelrnd |
|
107 |
|
eqid |
|
108 |
3 107
|
ipole |
|
109 |
104 35 106 108
|
syl3anc |
|
110 |
97 102 109
|
3bitr4d |
|
111 |
110
|
anasss |
|
112 |
111
|
ralrimivva |
|
113 |
|
eqid |
|
114 |
|
eqid |
|
115 |
|
eqid |
Could not format ( V MGalConn W ) = ( V MGalConn W ) : No typesetting found for |- ( V MGalConn W ) = ( V MGalConn W ) with typecode |- |
116 |
3
|
ipopos |
|
117 |
|
posprs |
|
118 |
116 117
|
mp1i |
|
119 |
4
|
ipopos |
|
120 |
|
posprs |
|
121 |
119 120
|
mp1i |
|
122 |
113 114 107 100 115 118 121
|
mgcval |
Could not format ( ph -> ( G ( V MGalConn W ) H <-> ( ( G : ( Base ` V ) --> ( Base ` W ) /\ H : ( Base ` W ) --> ( Base ` V ) ) /\ A. u e. ( Base ` V ) A. v e. ( Base ` W ) ( ( G ` u ) ( le ` W ) v <-> u ( le ` V ) ( H ` v ) ) ) ) ) : No typesetting found for |- ( ph -> ( G ( V MGalConn W ) H <-> ( ( G : ( Base ` V ) --> ( Base ` W ) /\ H : ( Base ` W ) --> ( Base ` V ) ) /\ A. u e. ( Base ` V ) A. v e. ( Base ` W ) ( ( G ` u ) ( le ` W ) v <-> u ( le ` V ) ( H ` v ) ) ) ) ) with typecode |- |
123 |
29 112 122
|
mpbir2and |
Could not format ( ph -> G ( V MGalConn W ) H ) : No typesetting found for |- ( ph -> G ( V MGalConn W ) H ) with typecode |- |