Step |
Hyp |
Ref |
Expression |
1 |
|
quotcan.1 |
|
2 |
|
plyssc |
|
3 |
|
simp2 |
|
4 |
2 3
|
sselid |
|
5 |
|
simp1 |
|
6 |
2 5
|
sselid |
|
7 |
|
plymulcl |
|
8 |
1 7
|
eqeltrid |
|
9 |
8
|
3adant3 |
|
10 |
|
simp3 |
|
11 |
|
quotcl2 |
|
12 |
9 4 10 11
|
syl3anc |
|
13 |
|
plysubcl |
|
14 |
6 12 13
|
syl2anc |
|
15 |
|
plymul0or |
|
16 |
4 14 15
|
syl2anc |
|
17 |
|
cnex |
|
18 |
17
|
a1i |
|
19 |
|
plyf |
|
20 |
5 19
|
syl |
|
21 |
|
plyf |
|
22 |
3 21
|
syl |
|
23 |
|
mulcom |
|
24 |
23
|
adantl |
|
25 |
18 20 22 24
|
caofcom |
|
26 |
1 25
|
eqtrid |
|
27 |
26
|
oveq1d |
|
28 |
|
plyf |
|
29 |
12 28
|
syl |
|
30 |
|
subdi |
|
31 |
30
|
adantl |
|
32 |
18 22 20 29 31
|
caofdi |
|
33 |
27 32
|
eqtr4d |
|
34 |
33
|
eqeq1d |
|
35 |
10
|
neneqd |
|
36 |
|
biorf |
|
37 |
35 36
|
syl |
|
38 |
16 34 37
|
3bitr4d |
|
39 |
38
|
biimpd |
|
40 |
|
eqid |
|
41 |
|
eqid |
|
42 |
40 41
|
dgrmul |
|
43 |
42
|
expr |
|
44 |
4 10 14 43
|
syl21anc |
|
45 |
|
dgrcl |
|
46 |
3 45
|
syl |
|
47 |
46
|
nn0red |
|
48 |
|
dgrcl |
|
49 |
14 48
|
syl |
|
50 |
|
nn0addge1 |
|
51 |
47 49 50
|
syl2anc |
|
52 |
|
breq2 |
|
53 |
51 52
|
syl5ibrcom |
|
54 |
44 53
|
syld |
|
55 |
33
|
fveq2d |
|
56 |
55
|
breq2d |
|
57 |
|
plymulcl |
|
58 |
4 12 57
|
syl2anc |
|
59 |
|
plysubcl |
|
60 |
9 58 59
|
syl2anc |
|
61 |
|
dgrcl |
|
62 |
60 61
|
syl |
|
63 |
62
|
nn0red |
|
64 |
47 63
|
lenltd |
|
65 |
56 64
|
bitr3d |
|
66 |
54 65
|
sylibd |
|
67 |
66
|
necon4ad |
|
68 |
|
eqid |
|
69 |
68
|
quotdgr |
|
70 |
9 4 10 69
|
syl3anc |
|
71 |
39 67 70
|
mpjaod |
|
72 |
|
df-0p |
|
73 |
71 72
|
eqtrdi |
|
74 |
|
ofsubeq0 |
|
75 |
18 20 29 74
|
syl3anc |
|
76 |
73 75
|
mpbid |
|
77 |
76
|
eqcomd |
|