Metamath Proof Explorer


Theorem quotcan

Description: Exact division with a multiple. (Contributed by Mario Carneiro, 26-Jul-2014)

Ref Expression
Hypothesis quotcan.1 H=F×fG
Assertion quotcan FPolySGPolySG0𝑝HquotG=F

Proof

Step Hyp Ref Expression
1 quotcan.1 H=F×fG
2 plyssc PolySPoly
3 simp2 FPolySGPolySG0𝑝GPolyS
4 2 3 sselid FPolySGPolySG0𝑝GPoly
5 simp1 FPolySGPolySG0𝑝FPolyS
6 2 5 sselid FPolySGPolySG0𝑝FPoly
7 plymulcl FPolySGPolySF×fGPoly
8 1 7 eqeltrid FPolySGPolySHPoly
9 8 3adant3 FPolySGPolySG0𝑝HPoly
10 simp3 FPolySGPolySG0𝑝G0𝑝
11 quotcl2 HPolyGPolyG0𝑝HquotGPoly
12 9 4 10 11 syl3anc FPolySGPolySG0𝑝HquotGPoly
13 plysubcl FPolyHquotGPolyFfHquotGPoly
14 6 12 13 syl2anc FPolySGPolySG0𝑝FfHquotGPoly
15 plymul0or GPolyFfHquotGPolyG×fFfHquotG=0𝑝G=0𝑝FfHquotG=0𝑝
16 4 14 15 syl2anc FPolySGPolySG0𝑝G×fFfHquotG=0𝑝G=0𝑝FfHquotG=0𝑝
17 cnex V
18 17 a1i FPolySGPolySG0𝑝V
19 plyf FPolySF:
20 5 19 syl FPolySGPolySG0𝑝F:
21 plyf GPolySG:
22 3 21 syl FPolySGPolySG0𝑝G:
23 mulcom xyxy=yx
24 23 adantl FPolySGPolySG0𝑝xyxy=yx
25 18 20 22 24 caofcom FPolySGPolySG0𝑝F×fG=G×fF
26 1 25 eqtrid FPolySGPolySG0𝑝H=G×fF
27 26 oveq1d FPolySGPolySG0𝑝HfG×fHquotG=G×fFfG×fHquotG
28 plyf HquotGPolyHquotG:
29 12 28 syl FPolySGPolySG0𝑝HquotG:
30 subdi xyzxyz=xyxz
31 30 adantl FPolySGPolySG0𝑝xyzxyz=xyxz
32 18 22 20 29 31 caofdi FPolySGPolySG0𝑝G×fFfHquotG=G×fFfG×fHquotG
33 27 32 eqtr4d FPolySGPolySG0𝑝HfG×fHquotG=G×fFfHquotG
34 33 eqeq1d FPolySGPolySG0𝑝HfG×fHquotG=0𝑝G×fFfHquotG=0𝑝
35 10 neneqd FPolySGPolySG0𝑝¬G=0𝑝
36 biorf ¬G=0𝑝FfHquotG=0𝑝G=0𝑝FfHquotG=0𝑝
37 35 36 syl FPolySGPolySG0𝑝FfHquotG=0𝑝G=0𝑝FfHquotG=0𝑝
38 16 34 37 3bitr4d FPolySGPolySG0𝑝HfG×fHquotG=0𝑝FfHquotG=0𝑝
39 38 biimpd FPolySGPolySG0𝑝HfG×fHquotG=0𝑝FfHquotG=0𝑝
40 eqid degG=degG
41 eqid degFfHquotG=degFfHquotG
42 40 41 dgrmul GPolyG0𝑝FfHquotGPolyFfHquotG0𝑝degG×fFfHquotG=degG+degFfHquotG
43 42 expr GPolyG0𝑝FfHquotGPolyFfHquotG0𝑝degG×fFfHquotG=degG+degFfHquotG
44 4 10 14 43 syl21anc FPolySGPolySG0𝑝FfHquotG0𝑝degG×fFfHquotG=degG+degFfHquotG
45 dgrcl GPolySdegG0
46 3 45 syl FPolySGPolySG0𝑝degG0
47 46 nn0red FPolySGPolySG0𝑝degG
48 dgrcl FfHquotGPolydegFfHquotG0
49 14 48 syl FPolySGPolySG0𝑝degFfHquotG0
50 nn0addge1 degGdegFfHquotG0degGdegG+degFfHquotG
51 47 49 50 syl2anc FPolySGPolySG0𝑝degGdegG+degFfHquotG
52 breq2 degG×fFfHquotG=degG+degFfHquotGdegGdegG×fFfHquotGdegGdegG+degFfHquotG
53 51 52 syl5ibrcom FPolySGPolySG0𝑝degG×fFfHquotG=degG+degFfHquotGdegGdegG×fFfHquotG
54 44 53 syld FPolySGPolySG0𝑝FfHquotG0𝑝degGdegG×fFfHquotG
55 33 fveq2d FPolySGPolySG0𝑝degHfG×fHquotG=degG×fFfHquotG
56 55 breq2d FPolySGPolySG0𝑝degGdegHfG×fHquotGdegGdegG×fFfHquotG
57 plymulcl GPolyHquotGPolyG×fHquotGPoly
58 4 12 57 syl2anc FPolySGPolySG0𝑝G×fHquotGPoly
59 plysubcl HPolyG×fHquotGPolyHfG×fHquotGPoly
60 9 58 59 syl2anc FPolySGPolySG0𝑝HfG×fHquotGPoly
61 dgrcl HfG×fHquotGPolydegHfG×fHquotG0
62 60 61 syl FPolySGPolySG0𝑝degHfG×fHquotG0
63 62 nn0red FPolySGPolySG0𝑝degHfG×fHquotG
64 47 63 lenltd FPolySGPolySG0𝑝degGdegHfG×fHquotG¬degHfG×fHquotG<degG
65 56 64 bitr3d FPolySGPolySG0𝑝degGdegG×fFfHquotG¬degHfG×fHquotG<degG
66 54 65 sylibd FPolySGPolySG0𝑝FfHquotG0𝑝¬degHfG×fHquotG<degG
67 66 necon4ad FPolySGPolySG0𝑝degHfG×fHquotG<degGFfHquotG=0𝑝
68 eqid HfG×fHquotG=HfG×fHquotG
69 68 quotdgr HPolyGPolyG0𝑝HfG×fHquotG=0𝑝degHfG×fHquotG<degG
70 9 4 10 69 syl3anc FPolySGPolySG0𝑝HfG×fHquotG=0𝑝degHfG×fHquotG<degG
71 39 67 70 mpjaod FPolySGPolySG0𝑝FfHquotG=0𝑝
72 df-0p 0𝑝=×0
73 71 72 eqtrdi FPolySGPolySG0𝑝FfHquotG=×0
74 ofsubeq0 VF:HquotG:FfHquotG=×0F=HquotG
75 18 20 29 74 syl3anc FPolySGPolySG0𝑝FfHquotG=×0F=HquotG
76 73 75 mpbid FPolySGPolySG0𝑝F=HquotG
77 76 eqcomd FPolySGPolySG0𝑝HquotG=F