Metamath Proof Explorer


Theorem restntr

Description: An interior in a subspace topology. Willard inGeneral Topology says that there is no analogue of restcls for interiors. In some sense, that is true. (Contributed by Jeff Hankins, 23-Jan-2010) (Revised by Mario Carneiro, 15-Dec-2013)

Ref Expression
Hypotheses restcls.1 X=J
restcls.2 K=J𝑡Y
Assertion restntr JTopYXSYintKS=intJSXYY

Proof

Step Hyp Ref Expression
1 restcls.1 X=J
2 restcls.2 K=J𝑡Y
3 2 fveq2i intK=intJ𝑡Y
4 3 fveq1i intKS=intJ𝑡YS
5 1 topopn JTopXJ
6 ssexg YXXJYV
7 6 ancoms XJYXYV
8 5 7 sylan JTopYXYV
9 resttop JTopYVJ𝑡YTop
10 8 9 syldan JTopYXJ𝑡YTop
11 10 3adant3 JTopYXSYJ𝑡YTop
12 1 restuni JTopYXY=J𝑡Y
13 12 sseq2d JTopYXSYSJ𝑡Y
14 13 biimp3a JTopYXSYSJ𝑡Y
15 eqid J𝑡Y=J𝑡Y
16 15 ntropn J𝑡YTopSJ𝑡YintJ𝑡YSJ𝑡Y
17 11 14 16 syl2anc JTopYXSYintJ𝑡YSJ𝑡Y
18 4 17 eqeltrid JTopYXSYintKSJ𝑡Y
19 simp1 JTopYXSYJTop
20 uniexg JTopJV
21 1 20 eqeltrid JTopXV
22 ssexg YXXVYV
23 21 22 sylan2 YXJTopYV
24 23 ancoms JTopYXYV
25 24 3adant3 JTopYXSYYV
26 elrest JTopYVintKSJ𝑡YoJintKS=oY
27 19 25 26 syl2anc JTopYXSYintKSJ𝑡YoJintKS=oY
28 18 27 mpbid JTopYXSYoJintKS=oY
29 1 eltopss JTopoJoX
30 29 sseld JTopoJxoxX
31 30 adantrr JTopoJintKS=oYxoxX
32 31 3ad2antl1 JTopYXSYoJintKS=oYxoxX
33 eldif xXYxX¬xY
34 33 simplbi2 xX¬xYxXY
35 34 orrd xXxYxXY
36 32 35 syl6 JTopYXSYoJintKS=oYxoxYxXY
37 elin xoYxoxY
38 eleq2 intKS=oYxintKSxoY
39 elun1 xintKSxintKSXY
40 38 39 syl6bir intKS=oYxoYxintKSXY
41 40 ad2antll JTopYXSYoJintKS=oYxoYxintKSXY
42 37 41 biimtrrid JTopYXSYoJintKS=oYxoxYxintKSXY
43 42 expdimp JTopYXSYoJintKS=oYxoxYxintKSXY
44 elun2 xXYxintKSXY
45 44 a1i JTopYXSYoJintKS=oYxoxXYxintKSXY
46 43 45 jaod JTopYXSYoJintKS=oYxoxYxXYxintKSXY
47 46 ex JTopYXSYoJintKS=oYxoxYxXYxintKSXY
48 36 47 mpdd JTopYXSYoJintKS=oYxoxintKSXY
49 48 ssrdv JTopYXSYoJintKS=oYointKSXY
50 11 adantr JTopYXSYoJintKS=oYJ𝑡YTop
51 2 50 eqeltrid JTopYXSYoJintKS=oYKTop
52 14 adantr JTopYXSYoJintKS=oYSJ𝑡Y
53 2 unieqi K=J𝑡Y
54 53 eqcomi J𝑡Y=K
55 54 ntrss2 KTopSJ𝑡YintKSS
56 51 52 55 syl2anc JTopYXSYoJintKS=oYintKSS
57 unss1 intKSSintKSXYSXY
58 56 57 syl JTopYXSYoJintKS=oYintKSXYSXY
59 49 58 sstrd JTopYXSYoJintKS=oYoSXY
60 simpl1 JTopYXSYoJoSXYJTop
61 sstr SYYXSX
62 61 ancoms YXSYSX
63 62 3adant1 JTopYXSYSX
64 63 adantr JTopYXSYoJoSXYSX
65 difss XYX
66 unss SXXYXSXYX
67 64 65 66 sylanblc JTopYXSYoJoSXYSXYX
68 simprl JTopYXSYoJoSXYoJ
69 simprr JTopYXSYoJoSXYoSXY
70 1 ssntr JTopSXYXoJoSXYointJSXY
71 60 67 68 69 70 syl22anc JTopYXSYoJoSXYointJSXY
72 71 ssrind JTopYXSYoJoSXYoYintJSXYY
73 sseq1 intKS=oYintKSintJSXYYoYintJSXYY
74 72 73 syl5ibrcom JTopYXSYoJoSXYintKS=oYintKSintJSXYY
75 74 expr JTopYXSYoJoSXYintKS=oYintKSintJSXYY
76 75 com23 JTopYXSYoJintKS=oYoSXYintKSintJSXYY
77 76 impr JTopYXSYoJintKS=oYoSXYintKSintJSXYY
78 59 77 mpd JTopYXSYoJintKS=oYintKSintJSXYY
79 28 78 rexlimddv JTopYXSYintKSintJSXYY
80 2 11 eqeltrid JTopYXSYKTop
81 8 3adant3 JTopYXSYYV
82 63 65 66 sylanblc JTopYXSYSXYX
83 1 ntropn JTopSXYXintJSXYJ
84 19 82 83 syl2anc JTopYXSYintJSXYJ
85 elrestr JTopYVintJSXYJintJSXYYJ𝑡Y
86 19 81 84 85 syl3anc JTopYXSYintJSXYYJ𝑡Y
87 86 2 eleqtrrdi JTopYXSYintJSXYYK
88 1 ntrss2 JTopSXYXintJSXYSXY
89 19 82 88 syl2anc JTopYXSYintJSXYSXY
90 89 ssrind JTopYXSYintJSXYYSXYY
91 elin xSXYYxSXYxY
92 elun xSXYxSxXY
93 orcom xSxXYxXYxS
94 df-or xXYxS¬xXYxS
95 93 94 bitri xSxXY¬xXYxS
96 92 95 bitri xSXY¬xXYxS
97 96 anbi1i xSXYxY¬xXYxSxY
98 91 97 bitri xSXYY¬xXYxSxY
99 elndif xY¬xXY
100 pm2.27 ¬xXY¬xXYxSxS
101 99 100 syl xY¬xXYxSxS
102 101 impcom ¬xXYxSxYxS
103 102 a1i JTopYXSY¬xXYxSxYxS
104 98 103 biimtrid JTopYXSYxSXYYxS
105 104 ssrdv JTopYXSYSXYYS
106 90 105 sstrd JTopYXSYintJSXYYS
107 54 ssntr KTopSJ𝑡YintJSXYYKintJSXYYSintJSXYYintKS
108 80 14 87 106 107 syl22anc JTopYXSYintJSXYYintKS
109 79 108 eqssd JTopYXSYintKS=intJSXYY