Metamath Proof Explorer


Theorem rhmcomulmpl

Description: Show that the ring homomorphism in rhmmpl preserves multiplication. (Contributed by SN, 8-Feb-2025)

Ref Expression
Hypotheses rhmcomulmpl.p P=ImPolyR
rhmcomulmpl.q Q=ImPolyS
rhmcomulmpl.b B=BaseP
rhmcomulmpl.c C=BaseQ
rhmcomulmpl.1 ·˙=P
rhmcomulmpl.2 ˙=Q
rhmcomulmpl.i φIV
rhmcomulmpl.h φHRRingHomS
rhmcomulmpl.f φFB
rhmcomulmpl.g φGB
Assertion rhmcomulmpl φHF·˙G=HF˙HG

Proof

Step Hyp Ref Expression
1 rhmcomulmpl.p P=ImPolyR
2 rhmcomulmpl.q Q=ImPolyS
3 rhmcomulmpl.b B=BaseP
4 rhmcomulmpl.c C=BaseQ
5 rhmcomulmpl.1 ·˙=P
6 rhmcomulmpl.2 ˙=Q
7 rhmcomulmpl.i φIV
8 rhmcomulmpl.h φHRRingHomS
9 rhmcomulmpl.f φFB
10 rhmcomulmpl.g φGB
11 eqid BaseR=BaseR
12 eqid BaseS=BaseS
13 11 12 rhmf HRRingHomSH:BaseRBaseS
14 8 13 syl φH:BaseRBaseS
15 eqid f0I|f-1Fin=f0I|f-1Fin
16 rhmrcl1 HRRingHomSRRing
17 8 16 syl φRRing
18 1 11 3 15 9 mplelf φF:f0I|f-1FinBaseR
19 1 11 3 15 10 mplelf φG:f0I|f-1FinBaseR
20 15 17 18 19 rhmmpllem2 φkf0I|f-1FinRdef0I|f-1Fin|efkFdRGkfdBaseR
21 14 20 cofmpt φHkf0I|f-1FinRdef0I|f-1Fin|efkFdRGkfd=kf0I|f-1FinHRdef0I|f-1Fin|efkFdRGkfd
22 eqid 0R=0R
23 17 ringcmnd φRCMnd
24 23 adantr φkf0I|f-1FinRCMnd
25 rhmrcl2 HRRingHomSSRing
26 8 25 syl φSRing
27 26 ringgrpd φSGrp
28 27 grpmndd φSMnd
29 28 adantr φkf0I|f-1FinSMnd
30 ovex 0IV
31 30 rabex f0I|f-1FinV
32 31 rabex ef0I|f-1Fin|efkV
33 32 a1i φkf0I|f-1Finef0I|f-1Fin|efkV
34 rhmghm HRRingHomSHRGrpHomS
35 ghmmhm HRGrpHomSHRMndHomS
36 8 34 35 3syl φHRMndHomS
37 36 adantr φkf0I|f-1FinHRMndHomS
38 eqid R=R
39 17 ad2antrr φkf0I|f-1Findef0I|f-1Fin|efkRRing
40 18 ad2antrr φkf0I|f-1Findef0I|f-1Fin|efkF:f0I|f-1FinBaseR
41 breq1 e=defkdfk
42 41 elrab def0I|f-1Fin|efkdf0I|f-1Findfk
43 42 biimpi def0I|f-1Fin|efkdf0I|f-1Findfk
44 43 adantl φkf0I|f-1Findef0I|f-1Fin|efkdf0I|f-1Findfk
45 44 simpld φkf0I|f-1Findef0I|f-1Fin|efkdf0I|f-1Fin
46 40 45 ffvelcdmd φkf0I|f-1Findef0I|f-1Fin|efkFdBaseR
47 19 ad2antrr φkf0I|f-1Findef0I|f-1Fin|efkG:f0I|f-1FinBaseR
48 simplr φkf0I|f-1Findef0I|f-1Fin|efkkf0I|f-1Fin
49 15 psrbagf df0I|f-1Find:I0
50 45 49 syl φkf0I|f-1Findef0I|f-1Fin|efkd:I0
51 44 simprd φkf0I|f-1Findef0I|f-1Fin|efkdfk
52 15 psrbagcon kf0I|f-1Find:I0dfkkfdf0I|f-1Finkfdfk
53 48 50 51 52 syl3anc φkf0I|f-1Findef0I|f-1Fin|efkkfdf0I|f-1Finkfdfk
54 53 simpld φkf0I|f-1Findef0I|f-1Fin|efkkfdf0I|f-1Fin
55 47 54 ffvelcdmd φkf0I|f-1Findef0I|f-1Fin|efkGkfdBaseR
56 11 38 39 46 55 ringcld φkf0I|f-1Findef0I|f-1Fin|efkFdRGkfdBaseR
57 15 17 18 19 rhmmpllem1 φkf0I|f-1FinfinSupp0Rdef0I|f-1Fin|efkFdRGkfd
58 11 22 24 29 33 37 56 57 gsummptmhm φkf0I|f-1FinSdef0I|f-1Fin|efkHFdRGkfd=HRdef0I|f-1Fin|efkFdRGkfd
59 8 ad2antrr φkf0I|f-1Findef0I|f-1Fin|efkHRRingHomS
60 eqid S=S
61 11 38 60 rhmmul HRRingHomSFdBaseRGkfdBaseRHFdRGkfd=HFdSHGkfd
62 59 46 55 61 syl3anc φkf0I|f-1Findef0I|f-1Fin|efkHFdRGkfd=HFdSHGkfd
63 40 45 fvco3d φkf0I|f-1Findef0I|f-1Fin|efkHFd=HFd
64 47 54 fvco3d φkf0I|f-1Findef0I|f-1Fin|efkHGkfd=HGkfd
65 63 64 oveq12d φkf0I|f-1Findef0I|f-1Fin|efkHFdSHGkfd=HFdSHGkfd
66 62 65 eqtr4d φkf0I|f-1Findef0I|f-1Fin|efkHFdRGkfd=HFdSHGkfd
67 66 mpteq2dva φkf0I|f-1Findef0I|f-1Fin|efkHFdRGkfd=def0I|f-1Fin|efkHFdSHGkfd
68 67 oveq2d φkf0I|f-1FinSdef0I|f-1Fin|efkHFdRGkfd=Sdef0I|f-1Fin|efkHFdSHGkfd
69 58 68 eqtr3d φkf0I|f-1FinHRdef0I|f-1Fin|efkFdRGkfd=Sdef0I|f-1Fin|efkHFdSHGkfd
70 69 mpteq2dva φkf0I|f-1FinHRdef0I|f-1Fin|efkFdRGkfd=kf0I|f-1FinSdef0I|f-1Fin|efkHFdSHGkfd
71 21 70 eqtrd φHkf0I|f-1FinRdef0I|f-1Fin|efkFdRGkfd=kf0I|f-1FinSdef0I|f-1Fin|efkHFdSHGkfd
72 1 3 38 5 15 9 10 mplmul φF·˙G=kf0I|f-1FinRdef0I|f-1Fin|efkFdRGkfd
73 72 coeq2d φHF·˙G=Hkf0I|f-1FinRdef0I|f-1Fin|efkFdRGkfd
74 1 2 3 4 7 36 9 mhmcompl φHFC
75 1 2 3 4 7 36 10 mhmcompl φHGC
76 2 4 60 6 15 74 75 mplmul φHF˙HG=kf0I|f-1FinSdef0I|f-1Fin|efkHFdSHGkfd
77 71 73 76 3eqtr4d φHF·˙G=HF˙HG