Metamath Proof Explorer


Theorem selberg3lem2

Description: Lemma for selberg3 . Equation 10.4.21 of Shapiro, p. 422. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Assertion selberg3lem2 x1+∞2logxn=1xΛnψxnlognn=1xΛnψxnx𝑂1

Proof

Step Hyp Ref Expression
1 1re 1
2 elicopnf 1y1+∞y1y
3 1 2 ax-mp y1+∞y1y
4 3 simplbi y1+∞y
5 4 ssriv 1+∞
6 5 a1i 1+∞
7 1 a1i 1
8 fzfid y1+∞1yFin
9 elfznn m1ym
10 9 adantl y1+∞m1ym
11 vmacl mΛm
12 10 11 syl y1+∞m1yΛm
13 10 nnrpd y1+∞m1ym+
14 13 relogcld y1+∞m1ylogm
15 12 14 remulcld y1+∞m1yΛmlogm
16 8 15 fsumrecl y1+∞m=1yΛmlogm
17 4 adantl y1+∞y
18 chpcl yψy
19 17 18 syl y1+∞ψy
20 1rp 1+
21 20 a1i y1+∞1+
22 3 simprbi y1+∞1y
23 22 adantl y1+∞1y
24 17 21 23 rpgecld y1+∞y+
25 24 relogcld y1+∞logy
26 19 25 remulcld y1+∞ψylogy
27 16 26 resubcld y1+∞m=1yΛmlogmψylogy
28 27 24 rerpdivcld y1+∞m=1yΛmlogmψylogyy
29 28 recnd y1+∞m=1yΛmlogmψylogyy
30 24 ex y1+∞y+
31 30 ssrdv 1+∞+
32 selberg2lem y+m=1yΛmlogmψylogyy𝑂1
33 32 a1i y+m=1yΛmlogmψylogyy𝑂1
34 31 33 o1res2 y1+∞m=1yΛmlogmψylogyy𝑂1
35 fzfid x1x1xFin
36 elfznn m1xm
37 36 adantl x1xm1xm
38 37 11 syl x1xm1xΛm
39 37 nnrpd x1xm1xm+
40 39 relogcld x1xm1xlogm
41 38 40 remulcld x1xm1xΛmlogm
42 35 41 fsumrecl x1xm=1xΛmlogm
43 chpcl xψx
44 43 ad2antrl x1xψx
45 simprl x1xx
46 20 a1i x1x1+
47 simprr x1x1x
48 45 46 47 rpgecld x1xx+
49 48 relogcld x1xlogx
50 44 49 remulcld x1xψxlogx
51 42 50 readdcld x1xm=1xΛmlogm+ψxlogx
52 27 adantr y1+∞x1xy<xm=1yΛmlogmψylogy
53 52 recnd y1+∞x1xy<xm=1yΛmlogmψylogy
54 24 adantr y1+∞x1xy<xy+
55 54 rpcnd y1+∞x1xy<xy
56 54 rpne0d y1+∞x1xy<xy0
57 53 55 56 absdivd y1+∞x1xy<xm=1yΛmlogmψylogyy=m=1yΛmlogmψylogyy
58 17 adantr y1+∞x1xy<xy
59 54 rpge0d y1+∞x1xy<x0y
60 58 59 absidd y1+∞x1xy<xy=y
61 60 oveq2d y1+∞x1xy<xm=1yΛmlogmψylogyy=m=1yΛmlogmψylogyy
62 57 61 eqtrd y1+∞x1xy<xm=1yΛmlogmψylogyy=m=1yΛmlogmψylogyy
63 53 abscld y1+∞x1xy<xm=1yΛmlogmψylogy
64 63 54 rerpdivcld y1+∞x1xy<xm=1yΛmlogmψylogyy
65 42 ad2ant2r y1+∞x1xy<xm=1xΛmlogm
66 simprll y1+∞x1xy<xx
67 66 43 syl y1+∞x1xy<xψx
68 simprr y1+∞x1xy<xy<x
69 58 66 68 ltled y1+∞x1xy<xyx
70 66 54 69 rpgecld y1+∞x1xy<xx+
71 70 relogcld y1+∞x1xy<xlogx
72 67 71 remulcld y1+∞x1xy<xψxlogx
73 65 72 readdcld y1+∞x1xy<xm=1xΛmlogm+ψxlogx
74 20 a1i y1+∞x1xy<x1+
75 53 absge0d y1+∞x1xy<x0m=1yΛmlogmψylogy
76 23 adantr y1+∞x1xy<x1y
77 74 54 63 75 76 lediv2ad y1+∞x1xy<xm=1yΛmlogmψylogyym=1yΛmlogmψylogy1
78 63 recnd y1+∞x1xy<xm=1yΛmlogmψylogy
79 78 div1d y1+∞x1xy<xm=1yΛmlogmψylogy1=m=1yΛmlogmψylogy
80 77 79 breqtrd y1+∞x1xy<xm=1yΛmlogmψylogyym=1yΛmlogmψylogy
81 16 adantr y1+∞x1xy<xm=1yΛmlogm
82 58 18 syl y1+∞x1xy<xψy
83 54 relogcld y1+∞x1xy<xlogy
84 82 83 remulcld y1+∞x1xy<xψylogy
85 81 84 readdcld y1+∞x1xy<xm=1yΛmlogm+ψylogy
86 81 recnd y1+∞x1xy<xm=1yΛmlogm
87 26 adantr y1+∞x1xy<xψylogy
88 87 recnd y1+∞x1xy<xψylogy
89 86 88 abs2dif2d y1+∞x1xy<xm=1yΛmlogmψylogym=1yΛmlogm+ψylogy
90 vmage0 m0Λm
91 10 90 syl y1+∞m1y0Λm
92 10 nnred y1+∞m1ym
93 10 nnge1d y1+∞m1y1m
94 92 93 logge0d y1+∞m1y0logm
95 12 14 91 94 mulge0d y1+∞m1y0Λmlogm
96 8 15 95 fsumge0 y1+∞0m=1yΛmlogm
97 96 adantr y1+∞x1xy<x0m=1yΛmlogm
98 81 97 absidd y1+∞x1xy<xm=1yΛmlogm=m=1yΛmlogm
99 chpge0 y0ψy
100 58 99 syl y1+∞x1xy<x0ψy
101 58 76 logge0d y1+∞x1xy<x0logy
102 82 83 100 101 mulge0d y1+∞x1xy<x0ψylogy
103 87 102 absidd y1+∞x1xy<xψylogy=ψylogy
104 98 103 oveq12d y1+∞x1xy<xm=1yΛmlogm+ψylogy=m=1yΛmlogm+ψylogy
105 89 104 breqtrd y1+∞x1xy<xm=1yΛmlogmψylogym=1yΛmlogm+ψylogy
106 fzfid y1+∞x1xy<x1xFin
107 36 adantl y1+∞x1xy<xm1xm
108 107 11 syl y1+∞x1xy<xm1xΛm
109 107 nnrpd y1+∞x1xy<xm1xm+
110 109 relogcld y1+∞x1xy<xm1xlogm
111 108 110 remulcld y1+∞x1xy<xm1xΛmlogm
112 107 90 syl y1+∞x1xy<xm1x0Λm
113 107 nnred y1+∞x1xy<xm1xm
114 107 nnge1d y1+∞x1xy<xm1x1m
115 113 114 logge0d y1+∞x1xy<xm1x0logm
116 108 110 112 115 mulge0d y1+∞x1xy<xm1x0Λmlogm
117 flword2 yxyxxy
118 58 66 69 117 syl3anc y1+∞x1xy<xxy
119 fzss2 xy1y1x
120 118 119 syl y1+∞x1xy<x1y1x
121 106 111 116 120 fsumless y1+∞x1xy<xm=1yΛmlogmm=1xΛmlogm
122 chpwordi yxyxψyψx
123 58 66 69 122 syl3anc y1+∞x1xy<xψyψx
124 54 70 logled y1+∞x1xy<xyxlogylogx
125 69 124 mpbid y1+∞x1xy<xlogylogx
126 82 67 83 71 100 101 123 125 lemul12ad y1+∞x1xy<xψylogyψxlogx
127 81 84 65 72 121 126 le2addd y1+∞x1xy<xm=1yΛmlogm+ψylogym=1xΛmlogm+ψxlogx
128 63 85 73 105 127 letrd y1+∞x1xy<xm=1yΛmlogmψylogym=1xΛmlogm+ψxlogx
129 64 63 73 80 128 letrd y1+∞x1xy<xm=1yΛmlogmψylogyym=1xΛmlogm+ψxlogx
130 62 129 eqbrtrd y1+∞x1xy<xm=1yΛmlogmψylogyym=1xΛmlogm+ψxlogx
131 6 7 29 34 51 130 o1bddrp c+y1+∞m=1yΛmlogmψylogyyc
132 131 mptru c+y1+∞m=1yΛmlogmψylogyyc
133 simpl c+y1+∞m=1yΛmlogmψylogyycc+
134 simpr c+y1+∞m=1yΛmlogmψylogyycy1+∞m=1yΛmlogmψylogyyc
135 133 134 selberg3lem1 c+y1+∞m=1yΛmlogmψylogyycx1+∞2logxn=1xΛnψxnlognn=1xΛnψxnx𝑂1
136 135 rexlimiva c+y1+∞m=1yΛmlogmψylogyycx1+∞2logxn=1xΛnψxnlognn=1xΛnψxnx𝑂1
137 132 136 ax-mp x1+∞2logxn=1xΛnψxnlognn=1xΛnψxnx𝑂1