Metamath Proof Explorer


Theorem sge0le

Description: If all of the terms of sums compare, so do the sums. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0le.x φXV
sge0le.F φF:X0+∞
sge0le.g φG:X0+∞
sge0le.le φxXFxGx
Assertion sge0le φsum^Fsum^G

Proof

Step Hyp Ref Expression
1 sge0le.x φXV
2 sge0le.F φF:X0+∞
3 sge0le.g φG:X0+∞
4 sge0le.le φxXFxGx
5 1 2 sge0xrcl φsum^F*
6 pnfge sum^F*sum^F+∞
7 5 6 syl φsum^F+∞
8 7 adantr φsum^G=+∞sum^F+∞
9 id sum^G=+∞sum^G=+∞
10 9 eqcomd sum^G=+∞+∞=sum^G
11 10 adantl φsum^G=+∞+∞=sum^G
12 8 11 breqtrd φsum^G=+∞sum^Fsum^G
13 elinel2 y𝒫XFinyFin
14 13 adantl φ¬sum^G=+∞y𝒫XFinyFin
15 2 adantr φ¬sum^G=+∞F:X0+∞
16 1 adantr φ+∞ranFXV
17 3 adantr φ+∞ranFG:X0+∞
18 simpr φ+∞ranF+∞ranF
19 2 ffnd φFFnX
20 fvelrnb FFnX+∞ranFxXFx=+∞
21 19 20 syl φ+∞ranFxXFx=+∞
22 21 adantr φ+∞ranF+∞ranFxXFx=+∞
23 18 22 mpbid φ+∞ranFxXFx=+∞
24 iccssxr 0+∞*
25 3 ffvelcdmda φxXGx0+∞
26 24 25 sselid φxXGx*
27 26 adantr φxXFx=+∞Gx*
28 id Fx=+∞Fx=+∞
29 28 eqcomd Fx=+∞+∞=Fx
30 29 adantl φxXFx=+∞+∞=Fx
31 4 adantr φxXFx=+∞FxGx
32 30 31 eqbrtrd φxXFx=+∞+∞Gx
33 27 32 xrgepnfd φxXFx=+∞Gx=+∞
34 33 eqcomd φxXFx=+∞+∞=Gx
35 3 ffnd φGFnX
36 35 adantr φxXGFnX
37 simpr φxXxX
38 fnfvelrn GFnXxXGxranG
39 36 37 38 syl2anc φxXGxranG
40 39 adantr φxXFx=+∞GxranG
41 34 40 eqeltrd φxXFx=+∞+∞ranG
42 41 ex φxXFx=+∞+∞ranG
43 42 adantlr φ+∞ranFxXFx=+∞+∞ranG
44 43 rexlimdva φ+∞ranFxXFx=+∞+∞ranG
45 23 44 mpd φ+∞ranF+∞ranG
46 16 17 45 sge0pnfval φ+∞ranFsum^G=+∞
47 46 adantlr φ¬sum^G=+∞+∞ranFsum^G=+∞
48 simplr φ¬sum^G=+∞+∞ranF¬sum^G=+∞
49 47 48 pm2.65da φ¬sum^G=+∞¬+∞ranF
50 15 49 fge0iccico φ¬sum^G=+∞F:X0+∞
51 50 adantr φ¬sum^G=+∞y𝒫XFinF:X0+∞
52 elpwinss y𝒫XFinyX
53 52 adantl φ¬sum^G=+∞y𝒫XFinyX
54 51 53 fssresd φ¬sum^G=+∞y𝒫XFinFy:y0+∞
55 14 54 sge0fsum φ¬sum^G=+∞y𝒫XFinsum^Fy=xyFyx
56 rge0ssre 0+∞
57 54 ffvelcdmda φ¬sum^G=+∞y𝒫XFinxyFyx0+∞
58 56 57 sselid φ¬sum^G=+∞y𝒫XFinxyFyx
59 14 58 fsumrecl φ¬sum^G=+∞y𝒫XFinxyFyx
60 55 59 eqeltrd φ¬sum^G=+∞y𝒫XFinsum^Fy
61 3 adantr φ¬sum^G=+∞G:X0+∞
62 1 adantr φ¬sum^G=+∞XV
63 simpr φ¬sum^G=+∞¬sum^G=+∞
64 62 61 sge0repnf φ¬sum^G=+∞sum^G¬sum^G=+∞
65 63 64 mpbird φ¬sum^G=+∞sum^G
66 62 61 65 sge0rern φ¬sum^G=+∞¬+∞ranG
67 61 66 fge0iccico φ¬sum^G=+∞G:X0+∞
68 67 adantr φ¬sum^G=+∞y𝒫XFinG:X0+∞
69 68 53 fssresd φ¬sum^G=+∞y𝒫XFinGy:y0+∞
70 14 69 sge0fsum φ¬sum^G=+∞y𝒫XFinsum^Gy=xyGyx
71 69 ffvelcdmda φ¬sum^G=+∞y𝒫XFinxyGyx0+∞
72 56 71 sselid φ¬sum^G=+∞y𝒫XFinxyGyx
73 14 72 fsumrecl φ¬sum^G=+∞y𝒫XFinxyGyx
74 70 73 eqeltrd φ¬sum^G=+∞y𝒫XFinsum^Gy
75 65 adantr φ¬sum^G=+∞y𝒫XFinsum^G
76 simplll φ¬sum^G=+∞y𝒫XFinxyφ
77 53 sselda φ¬sum^G=+∞y𝒫XFinxyxX
78 76 77 4 syl2anc φ¬sum^G=+∞y𝒫XFinxyFxGx
79 fvres xyFyx=Fx
80 79 adantl φ¬sum^G=+∞y𝒫XFinxyFyx=Fx
81 fvres xyGyx=Gx
82 81 adantl φ¬sum^G=+∞y𝒫XFinxyGyx=Gx
83 80 82 breq12d φ¬sum^G=+∞y𝒫XFinxyFyxGyxFxGx
84 78 83 mpbird φ¬sum^G=+∞y𝒫XFinxyFyxGyx
85 14 58 72 84 fsumle φ¬sum^G=+∞y𝒫XFinxyFyxxyGyx
86 55 70 breq12d φ¬sum^G=+∞y𝒫XFinsum^Fysum^GyxyFyxxyGyx
87 85 86 mpbird φ¬sum^G=+∞y𝒫XFinsum^Fysum^Gy
88 1 adantr φy𝒫XFinXV
89 3 adantr φy𝒫XFinG:X0+∞
90 88 89 sge0less φy𝒫XFinsum^Gysum^G
91 90 adantlr φ¬sum^G=+∞y𝒫XFinsum^Gysum^G
92 60 74 75 87 91 letrd φ¬sum^G=+∞y𝒫XFinsum^Fysum^G
93 92 ralrimiva φ¬sum^G=+∞y𝒫XFinsum^Fysum^G
94 62 61 sge0xrcl φ¬sum^G=+∞sum^G*
95 62 15 94 sge0lefi φ¬sum^G=+∞sum^Fsum^Gy𝒫XFinsum^Fysum^G
96 93 95 mpbird φ¬sum^G=+∞sum^Fsum^G
97 12 96 pm2.61dan φsum^Fsum^G