Metamath Proof Explorer


Theorem sge0sup

Description: The arbitrary sum of nonnegative extended reals is the supremum of finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0sup.x φ X V
sge0sup.f φ F : X 0 +∞
Assertion sge0sup φ sum^ F = sup ran x 𝒫 X Fin sum^ F x * <

Proof

Step Hyp Ref Expression
1 sge0sup.x φ X V
2 sge0sup.f φ F : X 0 +∞
3 eqidd φ +∞ ran F +∞ = +∞
4 1 adantr φ +∞ ran F X V
5 2 adantr φ +∞ ran F F : X 0 +∞
6 simpr φ +∞ ran F +∞ ran F
7 4 5 6 sge0pnfval φ +∞ ran F sum^ F = +∞
8 vex x V
9 8 a1i φ x 𝒫 X Fin x V
10 2 adantr φ x 𝒫 X Fin F : X 0 +∞
11 elinel1 x 𝒫 X Fin x 𝒫 X
12 elpwi x 𝒫 X x X
13 11 12 syl x 𝒫 X Fin x X
14 13 adantl φ x 𝒫 X Fin x X
15 10 14 fssresd φ x 𝒫 X Fin F x : x 0 +∞
16 9 15 sge0xrcl φ x 𝒫 X Fin sum^ F x *
17 16 adantlr φ +∞ ran F x 𝒫 X Fin sum^ F x *
18 17 ralrimiva φ +∞ ran F x 𝒫 X Fin sum^ F x *
19 eqid x 𝒫 X Fin sum^ F x = x 𝒫 X Fin sum^ F x
20 19 rnmptss x 𝒫 X Fin sum^ F x * ran x 𝒫 X Fin sum^ F x *
21 18 20 syl φ +∞ ran F ran x 𝒫 X Fin sum^ F x *
22 2 ffnd φ F Fn X
23 fvelrnb F Fn X +∞ ran F y X F y = +∞
24 22 23 syl φ +∞ ran F y X F y = +∞
25 24 adantr φ +∞ ran F +∞ ran F y X F y = +∞
26 6 25 mpbid φ +∞ ran F y X F y = +∞
27 snelpwi y X y 𝒫 X
28 snfi y Fin
29 28 a1i y X y Fin
30 27 29 elind y X y 𝒫 X Fin
31 30 3ad2ant2 φ y X F y = +∞ y 𝒫 X Fin
32 simp2 φ y X F y = +∞ y X
33 2 3ad2ant1 φ y X F y = +∞ F : X 0 +∞
34 32 snssd φ y X F y = +∞ y X
35 33 34 fssresd φ y X F y = +∞ F y : y 0 +∞
36 32 35 sge0sn φ y X F y = +∞ sum^ F y = F y y
37 vsnid y y
38 fvres y y F y y = F y
39 37 38 ax-mp F y y = F y
40 39 a1i φ y X F y = +∞ F y y = F y
41 simp3 φ y X F y = +∞ F y = +∞
42 36 40 41 3eqtrrd φ y X F y = +∞ +∞ = sum^ F y
43 reseq2 x = y F x = F y
44 43 fveq2d x = y sum^ F x = sum^ F y
45 44 rspceeqv y 𝒫 X Fin +∞ = sum^ F y x 𝒫 X Fin +∞ = sum^ F x
46 31 42 45 syl2anc φ y X F y = +∞ x 𝒫 X Fin +∞ = sum^ F x
47 pnfex +∞ V
48 47 a1i φ y X F y = +∞ +∞ V
49 19 46 48 elrnmptd φ y X F y = +∞ +∞ ran x 𝒫 X Fin sum^ F x
50 49 3exp φ y X F y = +∞ +∞ ran x 𝒫 X Fin sum^ F x
51 50 rexlimdv φ y X F y = +∞ +∞ ran x 𝒫 X Fin sum^ F x
52 51 adantr φ +∞ ran F y X F y = +∞ +∞ ran x 𝒫 X Fin sum^ F x
53 26 52 mpd φ +∞ ran F +∞ ran x 𝒫 X Fin sum^ F x
54 supxrpnf ran x 𝒫 X Fin sum^ F x * +∞ ran x 𝒫 X Fin sum^ F x sup ran x 𝒫 X Fin sum^ F x * < = +∞
55 21 53 54 syl2anc φ +∞ ran F sup ran x 𝒫 X Fin sum^ F x * < = +∞
56 3 7 55 3eqtr4d φ +∞ ran F sum^ F = sup ran x 𝒫 X Fin sum^ F x * <
57 1 adantr φ ¬ +∞ ran F X V
58 2 adantr φ ¬ +∞ ran F F : X 0 +∞
59 simpr φ ¬ +∞ ran F ¬ +∞ ran F
60 58 59 fge0iccico φ ¬ +∞ ran F F : X 0 +∞
61 57 60 sge0reval φ ¬ +∞ ran F sum^ F = sup ran x 𝒫 X Fin y x F y * <
62 elinel2 x 𝒫 X Fin x Fin
63 62 adantl φ ¬ +∞ ran F x 𝒫 X Fin x Fin
64 15 adantlr φ ¬ +∞ ran F x 𝒫 X Fin F x : x 0 +∞
65 nelrnres ¬ +∞ ran F ¬ +∞ ran F x
66 65 ad2antlr φ ¬ +∞ ran F x 𝒫 X Fin ¬ +∞ ran F x
67 64 66 fge0iccico φ ¬ +∞ ran F x 𝒫 X Fin F x : x 0 +∞
68 63 67 sge0fsum φ ¬ +∞ ran F x 𝒫 X Fin sum^ F x = y x F x y
69 simpr x 𝒫 X Fin y x y x
70 fvres y x F x y = F y
71 69 70 syl x 𝒫 X Fin y x F x y = F y
72 71 sumeq2dv x 𝒫 X Fin y x F x y = y x F y
73 72 adantl φ ¬ +∞ ran F x 𝒫 X Fin y x F x y = y x F y
74 68 73 eqtrd φ ¬ +∞ ran F x 𝒫 X Fin sum^ F x = y x F y
75 74 mpteq2dva φ ¬ +∞ ran F x 𝒫 X Fin sum^ F x = x 𝒫 X Fin y x F y
76 75 rneqd φ ¬ +∞ ran F ran x 𝒫 X Fin sum^ F x = ran x 𝒫 X Fin y x F y
77 76 supeq1d φ ¬ +∞ ran F sup ran x 𝒫 X Fin sum^ F x * < = sup ran x 𝒫 X Fin y x F y * <
78 61 77 eqtr4d φ ¬ +∞ ran F sum^ F = sup ran x 𝒫 X Fin sum^ F x * <
79 56 78 pm2.61dan φ sum^ F = sup ran x 𝒫 X Fin sum^ F x * <