Metamath Proof Explorer


Theorem sge0sup

Description: The arbitrary sum of nonnegative extended reals is the supremum of finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0sup.x φXV
sge0sup.f φF:X0+∞
Assertion sge0sup φsum^F=supranx𝒫XFinsum^Fx*<

Proof

Step Hyp Ref Expression
1 sge0sup.x φXV
2 sge0sup.f φF:X0+∞
3 eqidd φ+∞ranF+∞=+∞
4 1 adantr φ+∞ranFXV
5 2 adantr φ+∞ranFF:X0+∞
6 simpr φ+∞ranF+∞ranF
7 4 5 6 sge0pnfval φ+∞ranFsum^F=+∞
8 vex xV
9 8 a1i φx𝒫XFinxV
10 2 adantr φx𝒫XFinF:X0+∞
11 elinel1 x𝒫XFinx𝒫X
12 elpwi x𝒫XxX
13 11 12 syl x𝒫XFinxX
14 13 adantl φx𝒫XFinxX
15 10 14 fssresd φx𝒫XFinFx:x0+∞
16 9 15 sge0xrcl φx𝒫XFinsum^Fx*
17 16 adantlr φ+∞ranFx𝒫XFinsum^Fx*
18 17 ralrimiva φ+∞ranFx𝒫XFinsum^Fx*
19 eqid x𝒫XFinsum^Fx=x𝒫XFinsum^Fx
20 19 rnmptss x𝒫XFinsum^Fx*ranx𝒫XFinsum^Fx*
21 18 20 syl φ+∞ranFranx𝒫XFinsum^Fx*
22 2 ffnd φFFnX
23 fvelrnb FFnX+∞ranFyXFy=+∞
24 22 23 syl φ+∞ranFyXFy=+∞
25 24 adantr φ+∞ranF+∞ranFyXFy=+∞
26 6 25 mpbid φ+∞ranFyXFy=+∞
27 snelpwi yXy𝒫X
28 snfi yFin
29 28 a1i yXyFin
30 27 29 elind yXy𝒫XFin
31 30 3ad2ant2 φyXFy=+∞y𝒫XFin
32 simp2 φyXFy=+∞yX
33 2 3ad2ant1 φyXFy=+∞F:X0+∞
34 32 snssd φyXFy=+∞yX
35 33 34 fssresd φyXFy=+∞Fy:y0+∞
36 32 35 sge0sn φyXFy=+∞sum^Fy=Fyy
37 vsnid yy
38 fvres yyFyy=Fy
39 37 38 ax-mp Fyy=Fy
40 39 a1i φyXFy=+∞Fyy=Fy
41 simp3 φyXFy=+∞Fy=+∞
42 36 40 41 3eqtrrd φyXFy=+∞+∞=sum^Fy
43 reseq2 x=yFx=Fy
44 43 fveq2d x=ysum^Fx=sum^Fy
45 44 rspceeqv y𝒫XFin+∞=sum^Fyx𝒫XFin+∞=sum^Fx
46 31 42 45 syl2anc φyXFy=+∞x𝒫XFin+∞=sum^Fx
47 pnfex +∞V
48 47 a1i φyXFy=+∞+∞V
49 19 46 48 elrnmptd φyXFy=+∞+∞ranx𝒫XFinsum^Fx
50 49 3exp φyXFy=+∞+∞ranx𝒫XFinsum^Fx
51 50 rexlimdv φyXFy=+∞+∞ranx𝒫XFinsum^Fx
52 51 adantr φ+∞ranFyXFy=+∞+∞ranx𝒫XFinsum^Fx
53 26 52 mpd φ+∞ranF+∞ranx𝒫XFinsum^Fx
54 supxrpnf ranx𝒫XFinsum^Fx*+∞ranx𝒫XFinsum^Fxsupranx𝒫XFinsum^Fx*<=+∞
55 21 53 54 syl2anc φ+∞ranFsupranx𝒫XFinsum^Fx*<=+∞
56 3 7 55 3eqtr4d φ+∞ranFsum^F=supranx𝒫XFinsum^Fx*<
57 1 adantr φ¬+∞ranFXV
58 2 adantr φ¬+∞ranFF:X0+∞
59 simpr φ¬+∞ranF¬+∞ranF
60 58 59 fge0iccico φ¬+∞ranFF:X0+∞
61 57 60 sge0reval φ¬+∞ranFsum^F=supranx𝒫XFinyxFy*<
62 elinel2 x𝒫XFinxFin
63 62 adantl φ¬+∞ranFx𝒫XFinxFin
64 15 adantlr φ¬+∞ranFx𝒫XFinFx:x0+∞
65 nelrnres ¬+∞ranF¬+∞ranFx
66 65 ad2antlr φ¬+∞ranFx𝒫XFin¬+∞ranFx
67 64 66 fge0iccico φ¬+∞ranFx𝒫XFinFx:x0+∞
68 63 67 sge0fsum φ¬+∞ranFx𝒫XFinsum^Fx=yxFxy
69 simpr x𝒫XFinyxyx
70 fvres yxFxy=Fy
71 69 70 syl x𝒫XFinyxFxy=Fy
72 71 sumeq2dv x𝒫XFinyxFxy=yxFy
73 72 adantl φ¬+∞ranFx𝒫XFinyxFxy=yxFy
74 68 73 eqtrd φ¬+∞ranFx𝒫XFinsum^Fx=yxFy
75 74 mpteq2dva φ¬+∞ranFx𝒫XFinsum^Fx=x𝒫XFinyxFy
76 75 rneqd φ¬+∞ranFranx𝒫XFinsum^Fx=ranx𝒫XFinyxFy
77 76 supeq1d φ¬+∞ranFsupranx𝒫XFinsum^Fx*<=supranx𝒫XFinyxFy*<
78 61 77 eqtr4d φ¬+∞ranFsum^F=supranx𝒫XFinsum^Fx*<
79 56 78 pm2.61dan φsum^F=supranx𝒫XFinsum^Fx*<