Metamath Proof Explorer


Theorem sraassab

Description: A subring algebra is an associative algebra if and only if the subring is included in the ring's center. (Contributed by SN, 21-Mar-2025)

Ref Expression
Hypotheses sraassab.a A=subringAlgWS
sraassab.z Z=CntrmulGrpW
sraassab.w φWRing
sraassab.s φSSubRingW
Assertion sraassab φAAssAlgSZ

Proof

Step Hyp Ref Expression
1 sraassab.a A=subringAlgWS
2 sraassab.z Z=CntrmulGrpW
3 sraassab.w φWRing
4 sraassab.s φSSubRingW
5 eqid BaseW=BaseW
6 5 subrgss SSubRingWSBaseW
7 4 6 syl φSBaseW
8 7 adantr φAAssAlgSBaseW
9 8 sselda φAAssAlgySyBaseW
10 simpllr φAAssAlgySxBaseWAAssAlg
11 eqid W𝑠S=W𝑠S
12 11 subrgbas SSubRingWS=BaseW𝑠S
13 4 12 syl φS=BaseW𝑠S
14 1 a1i φA=subringAlgWS
15 14 7 srasca φW𝑠S=ScalarA
16 15 fveq2d φBaseW𝑠S=BaseScalarA
17 13 16 eqtrd φS=BaseScalarA
18 17 eqimssd φSBaseScalarA
19 18 sselda φySyBaseScalarA
20 19 ad4ant13 φAAssAlgySxBaseWyBaseScalarA
21 14 7 srabase φBaseW=BaseA
22 21 eqimssd φBaseWBaseA
23 22 ad2antrr φAAssAlgySBaseWBaseA
24 23 sselda φAAssAlgySxBaseWxBaseA
25 eqid 1W=1W
26 5 25 ringidcl WRing1WBaseW
27 3 26 syl φ1WBaseW
28 27 21 eleqtrd φ1WBaseA
29 28 ad3antrrr φAAssAlgySxBaseW1WBaseA
30 eqid BaseA=BaseA
31 eqid ScalarA=ScalarA
32 eqid BaseScalarA=BaseScalarA
33 eqid A=A
34 eqid A=A
35 30 31 32 33 34 assaassr AAssAlgyBaseScalarAxBaseA1WBaseAxAyA1W=yAxA1W
36 10 20 24 29 35 syl13anc φAAssAlgySxBaseWxAyA1W=yAxA1W
37 14 7 sramulr φW=A
38 37 ad3antrrr φAAssAlgySxBaseWW=A
39 38 oveqd φAAssAlgySxBaseWxWyA1W=xAyA1W
40 14 7 sravsca φW=A
41 40 ad3antrrr φAAssAlgySxBaseWW=A
42 41 oveqd φAAssAlgySxBaseWyW1W=yA1W
43 eqid W=W
44 3 ad3antrrr φAAssAlgySxBaseWWRing
45 9 adantr φAAssAlgySxBaseWyBaseW
46 5 43 25 44 45 ringridmd φAAssAlgySxBaseWyW1W=y
47 42 46 eqtr3d φAAssAlgySxBaseWyA1W=y
48 47 oveq2d φAAssAlgySxBaseWxWyA1W=xWy
49 39 48 eqtr3d φAAssAlgySxBaseWxAyA1W=xWy
50 41 oveqd φAAssAlgySxBaseWyWxA1W=yAxA1W
51 38 oveqd φAAssAlgySxBaseWxW1W=xA1W
52 simpr φAAssAlgySxBaseWxBaseW
53 5 43 25 44 52 ringridmd φAAssAlgySxBaseWxW1W=x
54 51 53 eqtr3d φAAssAlgySxBaseWxA1W=x
55 54 oveq2d φAAssAlgySxBaseWyWxA1W=yWx
56 50 55 eqtr3d φAAssAlgySxBaseWyAxA1W=yWx
57 36 49 56 3eqtr3rd φAAssAlgySxBaseWyWx=xWy
58 57 ralrimiva φAAssAlgySxBaseWyWx=xWy
59 eqid mulGrpW=mulGrpW
60 59 5 mgpbas BaseW=BasemulGrpW
61 59 43 mgpplusg W=+mulGrpW
62 60 61 2 elcntr yZyBaseWxBaseWyWx=xWy
63 9 58 62 sylanbrc φAAssAlgySyZ
64 63 ex φAAssAlgySyZ
65 64 ssrdv φAAssAlgSZ
66 21 adantr φSZBaseW=BaseA
67 15 adantr φSZW𝑠S=ScalarA
68 13 adantr φSZS=BaseW𝑠S
69 40 adantr φSZW=A
70 37 adantr φSZW=A
71 1 sralmod SSubRingWALMod
72 4 71 syl φALMod
73 72 adantr φSZALMod
74 1 5 sraring WRingSBaseWARing
75 3 7 74 syl2anc φARing
76 75 adantr φSZARing
77 3 ad2antrr φSZxSyBaseWzBaseWWRing
78 7 adantr φSZSBaseW
79 78 sselda φSZxSxBaseW
80 79 3ad2antr1 φSZxSyBaseWzBaseWxBaseW
81 simpr2 φSZxSyBaseWzBaseWyBaseW
82 simpr3 φSZxSyBaseWzBaseWzBaseW
83 5 43 77 80 81 82 ringassd φSZxSyBaseWzBaseWxWyWz=xWyWz
84 ssel2 SZxSxZ
85 84 ad2ant2lr φSZxSyBaseWxZ
86 simprr φSZxSyBaseWyBaseW
87 60 61 2 cntri xZyBaseWxWy=yWx
88 85 86 87 syl2anc φSZxSyBaseWxWy=yWx
89 88 3adantr3 φSZxSyBaseWzBaseWxWy=yWx
90 89 oveq1d φSZxSyBaseWzBaseWxWyWz=yWxWz
91 5 43 77 81 80 82 ringassd φSZxSyBaseWzBaseWyWxWz=yWxWz
92 90 83 91 3eqtr3rd φSZxSyBaseWzBaseWyWxWz=xWyWz
93 66 67 68 69 70 73 76 83 92 isassad φSZAAssAlg
94 65 93 impbida φAAssAlgSZ