| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssdifidl.1 |  | 
						
							| 2 |  | ssdifidl.2 |  | 
						
							| 3 |  | ssdifidl.3 |  | 
						
							| 4 |  | ssdifidl.4 |  | 
						
							| 5 |  | ssdifidl.5 |  | 
						
							| 6 |  | ssdifidl.6 |  | 
						
							| 7 |  | ssdifidllem.7 |  | 
						
							| 8 |  | ssdifidllem.8 |  | 
						
							| 9 |  | ssdifidllem.9 |  | 
						
							| 10 |  | ineq2 |  | 
						
							| 11 | 10 | eqeq1d |  | 
						
							| 12 |  | sseq2 |  | 
						
							| 13 | 11 12 | anbi12d |  | 
						
							| 14 | 6 | ssrab3 |  | 
						
							| 15 | 7 14 | sstrdi |  | 
						
							| 16 | 15 | sselda |  | 
						
							| 17 |  | eqid |  | 
						
							| 18 | 1 17 | lidlss |  | 
						
							| 19 | 16 18 | syl |  | 
						
							| 20 | 19 | ralrimiva |  | 
						
							| 21 |  | unissb |  | 
						
							| 22 | 20 21 | sylibr |  | 
						
							| 23 |  | eqid |  | 
						
							| 24 | 17 23 | lidl0cl |  | 
						
							| 25 | 2 16 24 | syl2an2r |  | 
						
							| 26 |  | n0i |  | 
						
							| 27 | 25 26 | syl |  | 
						
							| 28 | 27 | reximdva0 |  | 
						
							| 29 | 8 28 | mpdan |  | 
						
							| 30 |  | rexnal |  | 
						
							| 31 | 29 30 | sylib |  | 
						
							| 32 |  | uni0c |  | 
						
							| 33 | 32 | necon3abii |  | 
						
							| 34 | 31 33 | sylibr |  | 
						
							| 35 |  | eluni2 |  | 
						
							| 36 |  | eluni2 |  | 
						
							| 37 | 35 36 | anbi12i |  | 
						
							| 38 |  | an32 |  | 
						
							| 39 | 2 | ad6antr |  | 
						
							| 40 | 15 | ad6antr |  | 
						
							| 41 |  | simp-5r |  | 
						
							| 42 | 40 41 | sseldd |  | 
						
							| 43 |  | eqid |  | 
						
							| 44 |  | simp-6r |  | 
						
							| 45 |  | simpr |  | 
						
							| 46 |  | simplr |  | 
						
							| 47 | 45 46 | sseldd |  | 
						
							| 48 | 17 1 43 39 42 44 47 | lidlmcld |  | 
						
							| 49 |  | simp-4r |  | 
						
							| 50 |  | eqid |  | 
						
							| 51 | 17 50 | lidlacl |  | 
						
							| 52 | 39 42 48 49 51 | syl22anc |  | 
						
							| 53 |  | elunii |  | 
						
							| 54 | 52 41 53 | syl2anc |  | 
						
							| 55 | 2 | ad6antr |  | 
						
							| 56 | 15 | ad6antr |  | 
						
							| 57 |  | simpllr |  | 
						
							| 58 | 56 57 | sseldd |  | 
						
							| 59 |  | simp-6r |  | 
						
							| 60 |  | simplr |  | 
						
							| 61 | 17 1 43 55 58 59 60 | lidlmcld |  | 
						
							| 62 |  | simpr |  | 
						
							| 63 |  | simp-4r |  | 
						
							| 64 | 62 63 | sseldd |  | 
						
							| 65 | 17 50 | lidlacl |  | 
						
							| 66 | 55 58 61 64 65 | syl22anc |  | 
						
							| 67 |  | elunii |  | 
						
							| 68 | 66 57 67 | syl2anc |  | 
						
							| 69 | 9 | ad5antr |  | 
						
							| 70 |  | simplr |  | 
						
							| 71 |  | simp-4r |  | 
						
							| 72 |  | sorpssi |  | 
						
							| 73 | 69 70 71 72 | syl12anc |  | 
						
							| 74 | 54 68 73 | mpjaodan |  | 
						
							| 75 | 74 | r19.29an |  | 
						
							| 76 | 75 | an32s |  | 
						
							| 77 | 38 76 | sylanb |  | 
						
							| 78 | 77 | r19.29an |  | 
						
							| 79 | 78 | anasss |  | 
						
							| 80 | 37 79 | sylan2b |  | 
						
							| 81 | 80 | ralrimivva |  | 
						
							| 82 | 81 | ralrimiva |  | 
						
							| 83 | 17 1 50 43 | islidl |  | 
						
							| 84 | 22 34 82 83 | syl3anbrc |  | 
						
							| 85 |  | iunss1 |  | 
						
							| 86 | 7 85 | syl |  | 
						
							| 87 |  | uniin2 |  | 
						
							| 88 | 87 | a1i |  | 
						
							| 89 | 14 | a1i |  | 
						
							| 90 | 89 | sselda |  | 
						
							| 91 |  | simpr |  | 
						
							| 92 | 91 6 | eleqtrdi |  | 
						
							| 93 |  | ineq2 |  | 
						
							| 94 | 93 | eqeq1d |  | 
						
							| 95 |  | sseq2 |  | 
						
							| 96 | 94 95 | anbi12d |  | 
						
							| 97 | 96 | elrab3 |  | 
						
							| 98 | 97 | simprbda |  | 
						
							| 99 | 90 92 98 | syl2anc |  | 
						
							| 100 | 99 | iuneq2dv |  | 
						
							| 101 |  | iun0 |  | 
						
							| 102 | 100 101 | eqtrdi |  | 
						
							| 103 | 86 88 102 | 3sstr3d |  | 
						
							| 104 |  | ss0 |  | 
						
							| 105 | 103 104 | syl |  | 
						
							| 106 | 7 | sselda |  | 
						
							| 107 | 96 6 | elrab2 |  | 
						
							| 108 | 106 107 | sylib |  | 
						
							| 109 | 108 | simprrd |  | 
						
							| 110 | 109 | ralrimiva |  | 
						
							| 111 |  | ssint |  | 
						
							| 112 | 110 111 | sylibr |  | 
						
							| 113 |  | intssuni |  | 
						
							| 114 | 8 113 | syl |  | 
						
							| 115 | 112 114 | sstrd |  | 
						
							| 116 | 105 115 | jca |  | 
						
							| 117 | 13 84 116 | elrabd |  | 
						
							| 118 | 117 6 | eleqtrrdi |  |