Metamath Proof Explorer


Theorem stoweidlem60

Description: This lemma proves that there exists a function g as in the proof in BrosowskiDeutsh p. 91 (this parte of the proof actually spans through pages 91-92): g is in the subalgebra, and for all t in T , there is a j such that (j-4/3)*ε < f(t) <= (j-1/3)*ε and (j-4/3)*ε < g(t) < (j+1/3)*ε. Here F is used to represent f in the paper, and E is used to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem60.1 _tF
stoweidlem60.2 tφ
stoweidlem60.3 K=topGenran.
stoweidlem60.4 T=J
stoweidlem60.5 C=JCnK
stoweidlem60.6 D=j0ntT|Ftj13E
stoweidlem60.7 B=j0ntT|j+13EFt
stoweidlem60.8 φJComp
stoweidlem60.9 φT
stoweidlem60.10 φAC
stoweidlem60.11 φfAgAtTft+gtA
stoweidlem60.12 φfAgAtTftgtA
stoweidlem60.13 φytTyA
stoweidlem60.14 φrTtTrtqAqrqt
stoweidlem60.15 φFC
stoweidlem60.16 φtT0Ft
stoweidlem60.17 φE+
stoweidlem60.18 φE<13
Assertion stoweidlem60 φgAtTjj43E<FtFtj13Egt<j+13Ej43E<gt

Proof

Step Hyp Ref Expression
1 stoweidlem60.1 _tF
2 stoweidlem60.2 tφ
3 stoweidlem60.3 K=topGenran.
4 stoweidlem60.4 T=J
5 stoweidlem60.5 C=JCnK
6 stoweidlem60.6 D=j0ntT|Ftj13E
7 stoweidlem60.7 B=j0ntT|j+13EFt
8 stoweidlem60.8 φJComp
9 stoweidlem60.9 φT
10 stoweidlem60.10 φAC
11 stoweidlem60.11 φfAgAtTft+gtA
12 stoweidlem60.12 φfAgAtTftgtA
13 stoweidlem60.13 φytTyA
14 stoweidlem60.14 φrTtTrtqAqrqt
15 stoweidlem60.15 φFC
16 stoweidlem60.16 φtT0Ft
17 stoweidlem60.17 φE+
18 stoweidlem60.18 φE<13
19 nnre mm
20 19 adantl φmm
21 17 rpred φE
22 21 adantr φmE
23 17 rpne0d φE0
24 23 adantr φmE0
25 20 22 24 redivcld φmmE
26 1red φm1
27 25 26 readdcld φmmE+1
28 27 adantr φmtTFt<mmE+1
29 arch mE+1nmE+1<n
30 28 29 syl φmtTFt<mnmE+1<n
31 nfv tm
32 2 31 nfan tφm
33 nfra1 ttTFt<m
34 32 33 nfan tφmtTFt<m
35 nfv tn
36 34 35 nfan tφmtTFt<mn
37 nfv tmE+1<n
38 36 37 nfan tφmtTFt<mnmE+1<n
39 simp-5l φmtTFt<mnmE+1<ntTφ
40 3 4 5 15 fcnre φF:T
41 40 ffvelcdmda φtTFt
42 39 41 sylancom φmtTFt<mnmE+1<ntTFt
43 simp-5r φmtTFt<mnmE+1<ntTm
44 43 nnred φmtTFt<mnmE+1<ntTm
45 simpllr φmtTFt<mnmE+1<ntTn
46 45 nnred φmtTFt<mnmE+1<ntTn
47 1red φmtTFt<mnmE+1<ntT1
48 46 47 resubcld φmtTFt<mnmE+1<ntTn1
49 39 21 syl φmtTFt<mnmE+1<ntTE
50 48 49 remulcld φmtTFt<mnmE+1<ntTn1E
51 simpllr φmtTFt<mnmE+1<ntTFt<m
52 51 r19.21bi φmtTFt<mnmE+1<ntTFt<m
53 simplr φmtTFt<mnmE+1<ntTmE+1<n
54 simpr φmnmE+1<nmE+1<n
55 simpl1 φmnmE+1<nφ
56 simpl2 φmnmE+1<nm
57 55 56 25 syl2anc φmnmE+1<nmE
58 1red φmnmE+1<n1
59 simpl3 φmnmE+1<nn
60 59 nnred φmnmE+1<nn
61 57 58 60 ltaddsubd φmnmE+1<nmE+1<nmE<n1
62 54 61 mpbid φmnmE+1<nmE<n1
63 19 3ad2ant2 φmnm
64 63 adantr φmnmE+1<nm
65 60 58 resubcld φmnmE+1<nn1
66 21 3ad2ant1 φmnE
67 66 adantr φmnmE+1<nE
68 17 rpgt0d φ0<E
69 55 68 syl φmnmE+1<n0<E
70 ltdivmul2 mn1E0<EmE<n1m<n1E
71 64 65 67 69 70 syl112anc φmnmE+1<nmE<n1m<n1E
72 62 71 mpbid φmnmE+1<nm<n1E
73 39 43 45 53 72 syl31anc φmtTFt<mnmE+1<ntTm<n1E
74 42 44 50 52 73 lttrd φmtTFt<mnmE+1<ntTFt<n1E
75 74 ex φmtTFt<mnmE+1<ntTFt<n1E
76 38 75 ralrimi φmtTFt<mnmE+1<ntTFt<n1E
77 76 ex φmtTFt<mnmE+1<ntTFt<n1E
78 77 reximdva φmtTFt<mnmE+1<nntTFt<n1E
79 30 78 mpd φmtTFt<mntTFt<n1E
80 1 2 3 8 4 9 5 15 rfcnnnub φmtTFt<m
81 79 80 r19.29a φntTFt<n1E
82 df-rex ntTFt<n1EnntTFt<n1E
83 81 82 sylib φnntTFt<n1E
84 simpr φntTFt<n1EntTFt<n1E
85 2 35 nfan tφn
86 eqid yA|tT0ytyt1=yA|tT0ytyt1
87 eqid j0nyyA|tT0ytyt1|tDjyt<EntBj1En<yt=j0nyyA|tT0ytyt1|tDjyt<EntBj1En<yt
88 8 adantr φnJComp
89 10 adantr φnAC
90 11 3adant1r φnfAgAtTft+gtA
91 12 3adant1r φnfAgAtTftgtA
92 13 adantlr φnytTyA
93 14 adantlr φnrTtTrtqAqrqt
94 15 adantr φnFC
95 17 adantr φnE+
96 18 adantr φnE<13
97 simpr φnn
98 1 85 3 4 5 6 7 86 87 88 89 90 91 92 93 94 95 96 97 stoweidlem59 φnxx:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjt
99 98 adantrr φntTFt<n1Exx:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjt
100 19.42v xntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjtntTFt<n1Exx:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjt
101 84 99 100 sylanbrc φntTFt<n1ExntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjt
102 3anass ntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjtntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjt
103 102 exbii xntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjtxntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjt
104 101 103 sylibr φntTFt<n1ExntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjt
105 104 ex φntTFt<n1ExntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjt
106 105 eximdv φnntTFt<n1EnxntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjt
107 83 106 mpd φnxntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjt
108 simpl φntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjtφ
109 simpr1l φntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjtn
110 simpr2 φntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjtx:0nA
111 nfv tx:0nA
112 2 35 111 nf3an tφnx:0nA
113 simp2 φnx:0nAn
114 simp3 φnx:0nAx:0nA
115 simp1 φnx:0nAφ
116 115 11 syl3an1 φnx:0nAfAgAtTft+gtA
117 115 12 syl3an1 φnx:0nAfAgAtTftgtA
118 13 3ad2antl1 φnx:0nAytTyA
119 17 3ad2ant1 φnx:0nAE+
120 119 rpred φnx:0nAE
121 10 sselda φfAfC
122 3 4 5 121 fcnre φfAf:T
123 122 3ad2antl1 φnx:0nAfAf:T
124 112 113 114 116 117 118 120 123 stoweidlem17 φnx:0nAtTi=0nExitA
125 108 109 110 124 syl3anc φntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjttTi=0nExitA
126 nfv jφ
127 nfv jntTFt<n1E
128 nfv jx:0nA
129 nfra1 jj0ntT0xjtxjt1tDjxjt<EntBj1En<xjt
130 127 128 129 nf3an jntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjt
131 126 130 nfan jφntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjt
132 nfra1 ttTFt<n1E
133 35 132 nfan tntTFt<n1E
134 nfcv _t0n
135 nfra1 ttT0xjtxjt1
136 nfra1 ttDjxjt<En
137 nfra1 ttBj1En<xjt
138 135 136 137 nf3an ttT0xjtxjt1tDjxjt<EntBj1En<xjt
139 134 138 nfralw tj0ntT0xjtxjt1tDjxjt<EntBj1En<xjt
140 133 111 139 nf3an tntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjt
141 2 140 nfan tφntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjt
142 eqid tTj1n|tDj=tTj1n|tDj
143 8 uniexd φJV
144 4 143 eqeltrid φTV
145 144 adantr φntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjtTV
146 40 adantr φntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjtF:T
147 16 r19.21bi φtT0Ft
148 147 adantlr φntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjttT0Ft
149 simpr1r φntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjttTFt<n1E
150 149 r19.21bi φntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjttTFt<n1E
151 17 adantr φntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjtE+
152 18 adantr φntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjtE<13
153 simpll φntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjtj0nφ
154 simplr2 φntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjtj0nx:0nA
155 simpr φntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjtj0nj0n
156 simp1 φx:0nAj0nφ
157 ffvelcdm x:0nAj0nxjA
158 157 3adant1 φx:0nAj0nxjA
159 10 sselda φxjAxjC
160 3 4 5 159 fcnre φxjAxj:T
161 156 158 160 syl2anc φx:0nAj0nxj:T
162 153 154 155 161 syl3anc φntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjtj0nxj:T
163 simp1r3 φntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjtj0ntTj0ntT0xjtxjt1tDjxjt<EntBj1En<xjt
164 r19.26-3 j0ntT0xjtxjt1tDjxjt<EntBj1En<xjtj0ntT0xjtxjt1j0ntDjxjt<Enj0ntBj1En<xjt
165 164 simp1bi j0ntT0xjtxjt1tDjxjt<EntBj1En<xjtj0ntT0xjtxjt1
166 simpl 0xjtxjt10xjt
167 166 2ralimi j0ntT0xjtxjt1j0ntT0xjt
168 163 165 167 3syl φntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjtj0ntTj0ntT0xjt
169 simp2 φntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjtj0ntTj0n
170 simp3 φntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjtj0ntTtT
171 rspa j0ntT0xjtj0ntT0xjt
172 171 r19.21bi j0ntT0xjtj0ntT0xjt
173 168 169 170 172 syl21anc φntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjtj0ntT0xjt
174 simpr 0xjtxjt1xjt1
175 174 2ralimi j0ntT0xjtxjt1j0ntTxjt1
176 163 165 175 3syl φntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjtj0ntTj0ntTxjt1
177 rspa j0ntTxjt1j0ntTxjt1
178 177 r19.21bi j0ntTxjt1j0ntTxjt1
179 176 169 170 178 syl21anc φntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjtj0ntTxjt1
180 simp1r3 φntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjtj0ntDjj0ntT0xjtxjt1tDjxjt<EntBj1En<xjt
181 164 simp2bi j0ntT0xjtxjt1tDjxjt<EntBj1En<xjtj0ntDjxjt<En
182 180 181 syl φntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjtj0ntDjj0ntDjxjt<En
183 simp2 φntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjtj0ntDjj0n
184 simp3 φntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjtj0ntDjtDj
185 rspa j0ntDjxjt<Enj0ntDjxjt<En
186 185 r19.21bi j0ntDjxjt<Enj0ntDjxjt<En
187 182 183 184 186 syl21anc φntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjtj0ntDjxjt<En
188 simp1r3 φntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjtj0ntBjj0ntT0xjtxjt1tDjxjt<EntBj1En<xjt
189 164 simp3bi j0ntT0xjtxjt1tDjxjt<EntBj1En<xjtj0ntBj1En<xjt
190 188 189 syl φntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjtj0ntBjj0ntBj1En<xjt
191 simp2 φntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjtj0ntBjj0n
192 simp3 φntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjtj0ntBjtBj
193 rspa j0ntBj1En<xjtj0ntBj1En<xjt
194 193 r19.21bi j0ntBj1En<xjtj0ntBj1En<xjt
195 190 191 192 194 syl21anc φntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjtj0ntBj1En<xjt
196 1 131 141 6 7 142 109 145 146 148 150 151 152 162 173 179 187 195 stoweidlem34 φntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjttTjj43E<FtFtj13EtTi=0nExitt<j+13Ej43E<tTi=0nExitt
197 nfmpt1 _ttTi=0nExit
198 197 nfeq2 tg=tTi=0nExit
199 fveq1 g=tTi=0nExitgt=tTi=0nExitt
200 199 breq1d g=tTi=0nExitgt<j+13EtTi=0nExitt<j+13E
201 199 breq2d g=tTi=0nExitj43E<gtj43E<tTi=0nExitt
202 200 201 anbi12d g=tTi=0nExitgt<j+13Ej43E<gttTi=0nExitt<j+13Ej43E<tTi=0nExitt
203 202 anbi2d g=tTi=0nExitj43E<FtFtj13Egt<j+13Ej43E<gtj43E<FtFtj13EtTi=0nExitt<j+13Ej43E<tTi=0nExitt
204 203 rexbidv g=tTi=0nExitjj43E<FtFtj13Egt<j+13Ej43E<gtjj43E<FtFtj13EtTi=0nExitt<j+13Ej43E<tTi=0nExitt
205 198 204 ralbid g=tTi=0nExittTjj43E<FtFtj13Egt<j+13Ej43E<gttTjj43E<FtFtj13EtTi=0nExitt<j+13Ej43E<tTi=0nExitt
206 205 rspcev tTi=0nExitAtTjj43E<FtFtj13EtTi=0nExitt<j+13Ej43E<tTi=0nExittgAtTjj43E<FtFtj13Egt<j+13Ej43E<gt
207 125 196 206 syl2anc φntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjtgAtTjj43E<FtFtj13Egt<j+13Ej43E<gt
208 207 ex φntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjtgAtTjj43E<FtFtj13Egt<j+13Ej43E<gt
209 208 2eximdv φnxntTFt<n1Ex:0nAj0ntT0xjtxjt1tDjxjt<EntBj1En<xjtnxgAtTjj43E<FtFtj13Egt<j+13Ej43E<gt
210 107 209 mpd φnxgAtTjj43E<FtFtj13Egt<j+13Ej43E<gt
211 idd φxgAtTjj43E<FtFtj13Egt<j+13Ej43E<gtxgAtTjj43E<FtFtj13Egt<j+13Ej43E<gt
212 211 exlimdv φnxgAtTjj43E<FtFtj13Egt<j+13Ej43E<gtxgAtTjj43E<FtFtj13Egt<j+13Ej43E<gt
213 210 212 mpd φxgAtTjj43E<FtFtj13Egt<j+13Ej43E<gt
214 idd φgAtTjj43E<FtFtj13Egt<j+13Ej43E<gtgAtTjj43E<FtFtj13Egt<j+13Ej43E<gt
215 214 exlimdv φxgAtTjj43E<FtFtj13Egt<j+13Ej43E<gtgAtTjj43E<FtFtj13Egt<j+13Ej43E<gt
216 213 215 mpd φgAtTjj43E<FtFtj13Egt<j+13Ej43E<gt