Description: This lemma proves that there exists a function g as in the proof in BrosowskiDeutsh p. 91 (this parte of the proof actually spans through pages 91-92): g is in the subalgebra, and for all t in T , there is a j such that (j-4/3)*ε < f(t) <= (j-1/3)*ε and (j-4/3)*ε < g(t) < (j+1/3)*ε. Here F is used to represent f in the paper, and E is used to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | stoweidlem60.1 | |
|
stoweidlem60.2 | |
||
stoweidlem60.3 | |
||
stoweidlem60.4 | |
||
stoweidlem60.5 | |
||
stoweidlem60.6 | |
||
stoweidlem60.7 | |
||
stoweidlem60.8 | |
||
stoweidlem60.9 | |
||
stoweidlem60.10 | |
||
stoweidlem60.11 | |
||
stoweidlem60.12 | |
||
stoweidlem60.13 | |
||
stoweidlem60.14 | |
||
stoweidlem60.15 | |
||
stoweidlem60.16 | |
||
stoweidlem60.17 | |
||
stoweidlem60.18 | |
||
Assertion | stoweidlem60 | |