Metamath Proof Explorer


Theorem stoweidlem60

Description: This lemma proves that there exists a function g as in the proof in BrosowskiDeutsh p. 91 (this parte of the proof actually spans through pages 91-92): g is in the subalgebra, and for all t in T , there is a j such that (j-4/3)*ε < f(t) <= (j-1/3)*ε and (j-4/3)*ε < g(t) < (j+1/3)*ε. Here F is used to represent f in the paper, and E is used to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem60.1 _ t F
stoweidlem60.2 t φ
stoweidlem60.3 K = topGen ran .
stoweidlem60.4 T = J
stoweidlem60.5 C = J Cn K
stoweidlem60.6 D = j 0 n t T | F t j 1 3 E
stoweidlem60.7 B = j 0 n t T | j + 1 3 E F t
stoweidlem60.8 φ J Comp
stoweidlem60.9 φ T
stoweidlem60.10 φ A C
stoweidlem60.11 φ f A g A t T f t + g t A
stoweidlem60.12 φ f A g A t T f t g t A
stoweidlem60.13 φ y t T y A
stoweidlem60.14 φ r T t T r t q A q r q t
stoweidlem60.15 φ F C
stoweidlem60.16 φ t T 0 F t
stoweidlem60.17 φ E +
stoweidlem60.18 φ E < 1 3
Assertion stoweidlem60 φ g A t T j j 4 3 E < F t F t j 1 3 E g t < j + 1 3 E j 4 3 E < g t

Proof

Step Hyp Ref Expression
1 stoweidlem60.1 _ t F
2 stoweidlem60.2 t φ
3 stoweidlem60.3 K = topGen ran .
4 stoweidlem60.4 T = J
5 stoweidlem60.5 C = J Cn K
6 stoweidlem60.6 D = j 0 n t T | F t j 1 3 E
7 stoweidlem60.7 B = j 0 n t T | j + 1 3 E F t
8 stoweidlem60.8 φ J Comp
9 stoweidlem60.9 φ T
10 stoweidlem60.10 φ A C
11 stoweidlem60.11 φ f A g A t T f t + g t A
12 stoweidlem60.12 φ f A g A t T f t g t A
13 stoweidlem60.13 φ y t T y A
14 stoweidlem60.14 φ r T t T r t q A q r q t
15 stoweidlem60.15 φ F C
16 stoweidlem60.16 φ t T 0 F t
17 stoweidlem60.17 φ E +
18 stoweidlem60.18 φ E < 1 3
19 nnre m m
20 19 adantl φ m m
21 17 rpred φ E
22 21 adantr φ m E
23 17 rpne0d φ E 0
24 23 adantr φ m E 0
25 20 22 24 redivcld φ m m E
26 1red φ m 1
27 25 26 readdcld φ m m E + 1
28 27 adantr φ m t T F t < m m E + 1
29 arch m E + 1 n m E + 1 < n
30 28 29 syl φ m t T F t < m n m E + 1 < n
31 nfv t m
32 2 31 nfan t φ m
33 nfra1 t t T F t < m
34 32 33 nfan t φ m t T F t < m
35 nfv t n
36 34 35 nfan t φ m t T F t < m n
37 nfv t m E + 1 < n
38 36 37 nfan t φ m t T F t < m n m E + 1 < n
39 simp-5l φ m t T F t < m n m E + 1 < n t T φ
40 3 4 5 15 fcnre φ F : T
41 40 ffvelrnda φ t T F t
42 39 41 sylancom φ m t T F t < m n m E + 1 < n t T F t
43 simp-5r φ m t T F t < m n m E + 1 < n t T m
44 43 nnred φ m t T F t < m n m E + 1 < n t T m
45 simpllr φ m t T F t < m n m E + 1 < n t T n
46 45 nnred φ m t T F t < m n m E + 1 < n t T n
47 1red φ m t T F t < m n m E + 1 < n t T 1
48 46 47 resubcld φ m t T F t < m n m E + 1 < n t T n 1
49 39 21 syl φ m t T F t < m n m E + 1 < n t T E
50 48 49 remulcld φ m t T F t < m n m E + 1 < n t T n 1 E
51 simpllr φ m t T F t < m n m E + 1 < n t T F t < m
52 51 r19.21bi φ m t T F t < m n m E + 1 < n t T F t < m
53 simplr φ m t T F t < m n m E + 1 < n t T m E + 1 < n
54 simpr φ m n m E + 1 < n m E + 1 < n
55 simpl1 φ m n m E + 1 < n φ
56 simpl2 φ m n m E + 1 < n m
57 55 56 25 syl2anc φ m n m E + 1 < n m E
58 1red φ m n m E + 1 < n 1
59 simpl3 φ m n m E + 1 < n n
60 59 nnred φ m n m E + 1 < n n
61 57 58 60 ltaddsubd φ m n m E + 1 < n m E + 1 < n m E < n 1
62 54 61 mpbid φ m n m E + 1 < n m E < n 1
63 19 3ad2ant2 φ m n m
64 63 adantr φ m n m E + 1 < n m
65 60 58 resubcld φ m n m E + 1 < n n 1
66 21 3ad2ant1 φ m n E
67 66 adantr φ m n m E + 1 < n E
68 17 rpgt0d φ 0 < E
69 55 68 syl φ m n m E + 1 < n 0 < E
70 ltdivmul2 m n 1 E 0 < E m E < n 1 m < n 1 E
71 64 65 67 69 70 syl112anc φ m n m E + 1 < n m E < n 1 m < n 1 E
72 62 71 mpbid φ m n m E + 1 < n m < n 1 E
73 39 43 45 53 72 syl31anc φ m t T F t < m n m E + 1 < n t T m < n 1 E
74 42 44 50 52 73 lttrd φ m t T F t < m n m E + 1 < n t T F t < n 1 E
75 74 ex φ m t T F t < m n m E + 1 < n t T F t < n 1 E
76 38 75 ralrimi φ m t T F t < m n m E + 1 < n t T F t < n 1 E
77 76 ex φ m t T F t < m n m E + 1 < n t T F t < n 1 E
78 77 reximdva φ m t T F t < m n m E + 1 < n n t T F t < n 1 E
79 30 78 mpd φ m t T F t < m n t T F t < n 1 E
80 1 2 3 8 4 9 5 15 rfcnnnub φ m t T F t < m
81 79 80 r19.29a φ n t T F t < n 1 E
82 df-rex n t T F t < n 1 E n n t T F t < n 1 E
83 81 82 sylib φ n n t T F t < n 1 E
84 simpr φ n t T F t < n 1 E n t T F t < n 1 E
85 2 35 nfan t φ n
86 eqid y A | t T 0 y t y t 1 = y A | t T 0 y t y t 1
87 eqid j 0 n y y A | t T 0 y t y t 1 | t D j y t < E n t B j 1 E n < y t = j 0 n y y A | t T 0 y t y t 1 | t D j y t < E n t B j 1 E n < y t
88 8 adantr φ n J Comp
89 10 adantr φ n A C
90 11 3adant1r φ n f A g A t T f t + g t A
91 12 3adant1r φ n f A g A t T f t g t A
92 13 adantlr φ n y t T y A
93 14 adantlr φ n r T t T r t q A q r q t
94 15 adantr φ n F C
95 17 adantr φ n E +
96 18 adantr φ n E < 1 3
97 simpr φ n n
98 1 85 3 4 5 6 7 86 87 88 89 90 91 92 93 94 95 96 97 stoweidlem59 φ n x x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t
99 98 adantrr φ n t T F t < n 1 E x x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t
100 19.42v x n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t n t T F t < n 1 E x x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t
101 84 99 100 sylanbrc φ n t T F t < n 1 E x n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t
102 3anass n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t
103 102 exbii x n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t x n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t
104 101 103 sylibr φ n t T F t < n 1 E x n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t
105 104 ex φ n t T F t < n 1 E x n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t
106 105 eximdv φ n n t T F t < n 1 E n x n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t
107 83 106 mpd φ n x n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t
108 simpl φ n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t φ
109 simpr1l φ n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t n
110 simpr2 φ n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t x : 0 n A
111 nfv t x : 0 n A
112 2 35 111 nf3an t φ n x : 0 n A
113 simp2 φ n x : 0 n A n
114 simp3 φ n x : 0 n A x : 0 n A
115 simp1 φ n x : 0 n A φ
116 115 11 syl3an1 φ n x : 0 n A f A g A t T f t + g t A
117 115 12 syl3an1 φ n x : 0 n A f A g A t T f t g t A
118 13 3ad2antl1 φ n x : 0 n A y t T y A
119 17 3ad2ant1 φ n x : 0 n A E +
120 119 rpred φ n x : 0 n A E
121 10 sselda φ f A f C
122 3 4 5 121 fcnre φ f A f : T
123 122 3ad2antl1 φ n x : 0 n A f A f : T
124 112 113 114 116 117 118 120 123 stoweidlem17 φ n x : 0 n A t T i = 0 n E x i t A
125 108 109 110 124 syl3anc φ n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t t T i = 0 n E x i t A
126 nfv j φ
127 nfv j n t T F t < n 1 E
128 nfv j x : 0 n A
129 nfra1 j j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t
130 127 128 129 nf3an j n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t
131 126 130 nfan j φ n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t
132 nfra1 t t T F t < n 1 E
133 35 132 nfan t n t T F t < n 1 E
134 nfcv _ t 0 n
135 nfra1 t t T 0 x j t x j t 1
136 nfra1 t t D j x j t < E n
137 nfra1 t t B j 1 E n < x j t
138 135 136 137 nf3an t t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t
139 134 138 nfralw t j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t
140 133 111 139 nf3an t n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t
141 2 140 nfan t φ n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t
142 eqid t T j 1 n | t D j = t T j 1 n | t D j
143 8 uniexd φ J V
144 4 143 eqeltrid φ T V
145 144 adantr φ n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t T V
146 40 adantr φ n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t F : T
147 16 r19.21bi φ t T 0 F t
148 147 adantlr φ n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t t T 0 F t
149 simpr1r φ n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t t T F t < n 1 E
150 149 r19.21bi φ n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t t T F t < n 1 E
151 17 adantr φ n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t E +
152 18 adantr φ n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t E < 1 3
153 simpll φ n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t j 0 n φ
154 simplr2 φ n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t j 0 n x : 0 n A
155 simpr φ n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t j 0 n j 0 n
156 simp1 φ x : 0 n A j 0 n φ
157 ffvelrn x : 0 n A j 0 n x j A
158 157 3adant1 φ x : 0 n A j 0 n x j A
159 10 sselda φ x j A x j C
160 3 4 5 159 fcnre φ x j A x j : T
161 156 158 160 syl2anc φ x : 0 n A j 0 n x j : T
162 153 154 155 161 syl3anc φ n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t j 0 n x j : T
163 simp1r3 φ n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t j 0 n t T j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t
164 r19.26-3 j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t j 0 n t T 0 x j t x j t 1 j 0 n t D j x j t < E n j 0 n t B j 1 E n < x j t
165 164 simp1bi j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t j 0 n t T 0 x j t x j t 1
166 simpl 0 x j t x j t 1 0 x j t
167 166 2ralimi j 0 n t T 0 x j t x j t 1 j 0 n t T 0 x j t
168 163 165 167 3syl φ n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t j 0 n t T j 0 n t T 0 x j t
169 simp2 φ n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t j 0 n t T j 0 n
170 simp3 φ n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t j 0 n t T t T
171 rspa j 0 n t T 0 x j t j 0 n t T 0 x j t
172 171 r19.21bi j 0 n t T 0 x j t j 0 n t T 0 x j t
173 168 169 170 172 syl21anc φ n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t j 0 n t T 0 x j t
174 simpr 0 x j t x j t 1 x j t 1
175 174 2ralimi j 0 n t T 0 x j t x j t 1 j 0 n t T x j t 1
176 163 165 175 3syl φ n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t j 0 n t T j 0 n t T x j t 1
177 rspa j 0 n t T x j t 1 j 0 n t T x j t 1
178 177 r19.21bi j 0 n t T x j t 1 j 0 n t T x j t 1
179 176 169 170 178 syl21anc φ n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t j 0 n t T x j t 1
180 simp1r3 φ n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t j 0 n t D j j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t
181 164 simp2bi j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t j 0 n t D j x j t < E n
182 180 181 syl φ n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t j 0 n t D j j 0 n t D j x j t < E n
183 simp2 φ n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t j 0 n t D j j 0 n
184 simp3 φ n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t j 0 n t D j t D j
185 rspa j 0 n t D j x j t < E n j 0 n t D j x j t < E n
186 185 r19.21bi j 0 n t D j x j t < E n j 0 n t D j x j t < E n
187 182 183 184 186 syl21anc φ n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t j 0 n t D j x j t < E n
188 simp1r3 φ n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t j 0 n t B j j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t
189 164 simp3bi j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t j 0 n t B j 1 E n < x j t
190 188 189 syl φ n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t j 0 n t B j j 0 n t B j 1 E n < x j t
191 simp2 φ n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t j 0 n t B j j 0 n
192 simp3 φ n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t j 0 n t B j t B j
193 rspa j 0 n t B j 1 E n < x j t j 0 n t B j 1 E n < x j t
194 193 r19.21bi j 0 n t B j 1 E n < x j t j 0 n t B j 1 E n < x j t
195 190 191 192 194 syl21anc φ n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t j 0 n t B j 1 E n < x j t
196 1 131 141 6 7 142 109 145 146 148 150 151 152 162 173 179 187 195 stoweidlem34 φ n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t t T j j 4 3 E < F t F t j 1 3 E t T i = 0 n E x i t t < j + 1 3 E j 4 3 E < t T i = 0 n E x i t t
197 nfmpt1 _ t t T i = 0 n E x i t
198 197 nfeq2 t g = t T i = 0 n E x i t
199 fveq1 g = t T i = 0 n E x i t g t = t T i = 0 n E x i t t
200 199 breq1d g = t T i = 0 n E x i t g t < j + 1 3 E t T i = 0 n E x i t t < j + 1 3 E
201 199 breq2d g = t T i = 0 n E x i t j 4 3 E < g t j 4 3 E < t T i = 0 n E x i t t
202 200 201 anbi12d g = t T i = 0 n E x i t g t < j + 1 3 E j 4 3 E < g t t T i = 0 n E x i t t < j + 1 3 E j 4 3 E < t T i = 0 n E x i t t
203 202 anbi2d g = t T i = 0 n E x i t j 4 3 E < F t F t j 1 3 E g t < j + 1 3 E j 4 3 E < g t j 4 3 E < F t F t j 1 3 E t T i = 0 n E x i t t < j + 1 3 E j 4 3 E < t T i = 0 n E x i t t
204 203 rexbidv g = t T i = 0 n E x i t j j 4 3 E < F t F t j 1 3 E g t < j + 1 3 E j 4 3 E < g t j j 4 3 E < F t F t j 1 3 E t T i = 0 n E x i t t < j + 1 3 E j 4 3 E < t T i = 0 n E x i t t
205 198 204 ralbid g = t T i = 0 n E x i t t T j j 4 3 E < F t F t j 1 3 E g t < j + 1 3 E j 4 3 E < g t t T j j 4 3 E < F t F t j 1 3 E t T i = 0 n E x i t t < j + 1 3 E j 4 3 E < t T i = 0 n E x i t t
206 205 rspcev t T i = 0 n E x i t A t T j j 4 3 E < F t F t j 1 3 E t T i = 0 n E x i t t < j + 1 3 E j 4 3 E < t T i = 0 n E x i t t g A t T j j 4 3 E < F t F t j 1 3 E g t < j + 1 3 E j 4 3 E < g t
207 125 196 206 syl2anc φ n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t g A t T j j 4 3 E < F t F t j 1 3 E g t < j + 1 3 E j 4 3 E < g t
208 207 ex φ n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t g A t T j j 4 3 E < F t F t j 1 3 E g t < j + 1 3 E j 4 3 E < g t
209 208 2eximdv φ n x n t T F t < n 1 E x : 0 n A j 0 n t T 0 x j t x j t 1 t D j x j t < E n t B j 1 E n < x j t n x g A t T j j 4 3 E < F t F t j 1 3 E g t < j + 1 3 E j 4 3 E < g t
210 107 209 mpd φ n x g A t T j j 4 3 E < F t F t j 1 3 E g t < j + 1 3 E j 4 3 E < g t
211 idd φ x g A t T j j 4 3 E < F t F t j 1 3 E g t < j + 1 3 E j 4 3 E < g t x g A t T j j 4 3 E < F t F t j 1 3 E g t < j + 1 3 E j 4 3 E < g t
212 211 exlimdv φ n x g A t T j j 4 3 E < F t F t j 1 3 E g t < j + 1 3 E j 4 3 E < g t x g A t T j j 4 3 E < F t F t j 1 3 E g t < j + 1 3 E j 4 3 E < g t
213 210 212 mpd φ x g A t T j j 4 3 E < F t F t j 1 3 E g t < j + 1 3 E j 4 3 E < g t
214 idd φ g A t T j j 4 3 E < F t F t j 1 3 E g t < j + 1 3 E j 4 3 E < g t g A t T j j 4 3 E < F t F t j 1 3 E g t < j + 1 3 E j 4 3 E < g t
215 214 exlimdv φ x g A t T j j 4 3 E < F t F t j 1 3 E g t < j + 1 3 E j 4 3 E < g t g A t T j j 4 3 E < F t F t j 1 3 E g t < j + 1 3 E j 4 3 E < g t
216 213 215 mpd φ g A t T j j 4 3 E < F t F t j 1 3 E g t < j + 1 3 E j 4 3 E < g t