Metamath Proof Explorer


Theorem sylow2blem1

Description: Lemma for sylow2b . Evaluate the group action on a left coset. (Contributed by Mario Carneiro, 17-Jan-2015)

Ref Expression
Hypotheses sylow2b.x X=BaseG
sylow2b.xf φXFin
sylow2b.h φHSubGrpG
sylow2b.k φKSubGrpG
sylow2b.a +˙=+G
sylow2b.r ˙=G~QGK
sylow2b.m ·˙=xH,yX/˙ranzyx+˙z
Assertion sylow2blem1 φBHCXB·˙C˙=B+˙C˙

Proof

Step Hyp Ref Expression
1 sylow2b.x X=BaseG
2 sylow2b.xf φXFin
3 sylow2b.h φHSubGrpG
4 sylow2b.k φKSubGrpG
5 sylow2b.a +˙=+G
6 sylow2b.r ˙=G~QGK
7 sylow2b.m ·˙=xH,yX/˙ranzyx+˙z
8 simp2 φBHCXBH
9 6 ovexi ˙V
10 simp3 φBHCXCX
11 ecelqsg ˙VCXC˙X/˙
12 9 10 11 sylancr φBHCXC˙X/˙
13 simpr x=By=C˙y=C˙
14 simpl x=By=C˙x=B
15 14 oveq1d x=By=C˙x+˙z=B+˙z
16 13 15 mpteq12dv x=By=C˙zyx+˙z=zC˙B+˙z
17 16 rneqd x=By=C˙ranzyx+˙z=ranzC˙B+˙z
18 ecexg ˙VC˙V
19 9 18 ax-mp C˙V
20 19 mptex zC˙B+˙zV
21 20 rnex ranzC˙B+˙zV
22 17 7 21 ovmpoa BHC˙X/˙B·˙C˙=ranzC˙B+˙z
23 8 12 22 syl2anc φBHCXB·˙C˙=ranzC˙B+˙z
24 1 6 eqger KSubGrpG˙ErX
25 4 24 syl φ˙ErX
26 25 ecss φB+˙C˙X
27 2 26 ssfid φB+˙C˙Fin
28 27 3ad2ant1 φBHCXB+˙C˙Fin
29 vex zV
30 elecg zVCXzC˙C˙z
31 29 10 30 sylancr φBHCXzC˙C˙z
32 31 biimpa φBHCXzC˙C˙z
33 subgrcl HSubGrpGGGrp
34 3 33 syl φGGrp
35 34 3ad2ant1 φBHCXGGrp
36 1 subgss HSubGrpGHX
37 3 36 syl φHX
38 37 3ad2ant1 φBHCXHX
39 38 8 sseldd φBHCXBX
40 1 5 grpcl GGrpBXCXB+˙CX
41 35 39 10 40 syl3anc φBHCXB+˙CX
42 41 adantr φBHCXC˙zB+˙CX
43 35 adantr φBHCXC˙zGGrp
44 39 adantr φBHCXC˙zBX
45 1 subgss KSubGrpGKX
46 4 45 syl φKX
47 eqid invgG=invgG
48 1 47 5 6 eqgval GGrpKXC˙zCXzXinvgGC+˙zK
49 34 46 48 syl2anc φC˙zCXzXinvgGC+˙zK
50 49 3ad2ant1 φBHCXC˙zCXzXinvgGC+˙zK
51 50 biimpa φBHCXC˙zCXzXinvgGC+˙zK
52 51 simp2d φBHCXC˙zzX
53 1 5 grpcl GGrpBXzXB+˙zX
54 43 44 52 53 syl3anc φBHCXC˙zB+˙zX
55 1 47 grpinvcl GGrpB+˙CXinvgGB+˙CX
56 35 41 55 syl2anc φBHCXinvgGB+˙CX
57 56 adantr φBHCXC˙zinvgGB+˙CX
58 1 5 grpass GGrpinvgGB+˙CXBXzXinvgGB+˙C+˙B+˙z=invgGB+˙C+˙B+˙z
59 43 57 44 52 58 syl13anc φBHCXC˙zinvgGB+˙C+˙B+˙z=invgGB+˙C+˙B+˙z
60 1 5 47 grpinvadd GGrpBXCXinvgGB+˙C=invgGC+˙invgGB
61 35 39 10 60 syl3anc φBHCXinvgGB+˙C=invgGC+˙invgGB
62 1 47 grpinvcl GGrpCXinvgGCX
63 35 10 62 syl2anc φBHCXinvgGCX
64 eqid -G=-G
65 1 5 47 64 grpsubval invgGCXBXinvgGC-GB=invgGC+˙invgGB
66 63 39 65 syl2anc φBHCXinvgGC-GB=invgGC+˙invgGB
67 61 66 eqtr4d φBHCXinvgGB+˙C=invgGC-GB
68 67 oveq1d φBHCXinvgGB+˙C+˙B=invgGC-GB+˙B
69 1 5 64 grpnpcan GGrpinvgGCXBXinvgGC-GB+˙B=invgGC
70 35 63 39 69 syl3anc φBHCXinvgGC-GB+˙B=invgGC
71 68 70 eqtrd φBHCXinvgGB+˙C+˙B=invgGC
72 71 oveq1d φBHCXinvgGB+˙C+˙B+˙z=invgGC+˙z
73 72 adantr φBHCXC˙zinvgGB+˙C+˙B+˙z=invgGC+˙z
74 59 73 eqtr3d φBHCXC˙zinvgGB+˙C+˙B+˙z=invgGC+˙z
75 51 simp3d φBHCXC˙zinvgGC+˙zK
76 74 75 eqeltrd φBHCXC˙zinvgGB+˙C+˙B+˙zK
77 1 47 5 6 eqgval GGrpKXB+˙C˙B+˙zB+˙CXB+˙zXinvgGB+˙C+˙B+˙zK
78 34 46 77 syl2anc φB+˙C˙B+˙zB+˙CXB+˙zXinvgGB+˙C+˙B+˙zK
79 78 3ad2ant1 φBHCXB+˙C˙B+˙zB+˙CXB+˙zXinvgGB+˙C+˙B+˙zK
80 79 adantr φBHCXC˙zB+˙C˙B+˙zB+˙CXB+˙zXinvgGB+˙C+˙B+˙zK
81 42 54 76 80 mpbir3and φBHCXC˙zB+˙C˙B+˙z
82 ovex B+˙zV
83 ovex B+˙CV
84 82 83 elec B+˙zB+˙C˙B+˙C˙B+˙z
85 81 84 sylibr φBHCXC˙zB+˙zB+˙C˙
86 32 85 syldan φBHCXzC˙B+˙zB+˙C˙
87 86 fmpttd φBHCXzC˙B+˙z:C˙B+˙C˙
88 87 frnd φBHCXranzC˙B+˙zB+˙C˙
89 eqid zXB+˙z=zXB+˙z
90 1 5 89 grplmulf1o GGrpBXzXB+˙z:X1-1 ontoX
91 35 39 90 syl2anc φBHCXzXB+˙z:X1-1 ontoX
92 f1of1 zXB+˙z:X1-1 ontoXzXB+˙z:X1-1X
93 91 92 syl φBHCXzXB+˙z:X1-1X
94 25 ecss φC˙X
95 94 3ad2ant1 φBHCXC˙X
96 f1ssres zXB+˙z:X1-1XC˙XzXB+˙zC˙:C˙1-1X
97 93 95 96 syl2anc φBHCXzXB+˙zC˙:C˙1-1X
98 resmpt C˙XzXB+˙zC˙=zC˙B+˙z
99 f1eq1 zXB+˙zC˙=zC˙B+˙zzXB+˙zC˙:C˙1-1XzC˙B+˙z:C˙1-1X
100 95 98 99 3syl φBHCXzXB+˙zC˙:C˙1-1XzC˙B+˙z:C˙1-1X
101 97 100 mpbid φBHCXzC˙B+˙z:C˙1-1X
102 f1f1orn zC˙B+˙z:C˙1-1XzC˙B+˙z:C˙1-1 ontoranzC˙B+˙z
103 101 102 syl φBHCXzC˙B+˙z:C˙1-1 ontoranzC˙B+˙z
104 19 f1oen zC˙B+˙z:C˙1-1 ontoranzC˙B+˙zC˙ranzC˙B+˙z
105 ensym C˙ranzC˙B+˙zranzC˙B+˙zC˙
106 103 104 105 3syl φBHCXranzC˙B+˙zC˙
107 4 3ad2ant1 φBHCXKSubGrpG
108 1 6 eqgen KSubGrpGC˙X/˙KC˙
109 107 12 108 syl2anc φBHCXKC˙
110 ensym KC˙C˙K
111 109 110 syl φBHCXC˙K
112 ecelqsg ˙VB+˙CXB+˙C˙X/˙
113 9 41 112 sylancr φBHCXB+˙C˙X/˙
114 1 6 eqgen KSubGrpGB+˙C˙X/˙KB+˙C˙
115 107 113 114 syl2anc φBHCXKB+˙C˙
116 entr C˙KKB+˙C˙C˙B+˙C˙
117 111 115 116 syl2anc φBHCXC˙B+˙C˙
118 entr ranzC˙B+˙zC˙C˙B+˙C˙ranzC˙B+˙zB+˙C˙
119 106 117 118 syl2anc φBHCXranzC˙B+˙zB+˙C˙
120 fisseneq B+˙C˙FinranzC˙B+˙zB+˙C˙ranzC˙B+˙zB+˙C˙ranzC˙B+˙z=B+˙C˙
121 28 88 119 120 syl3anc φBHCXranzC˙B+˙z=B+˙C˙
122 23 121 eqtrd φBHCXB·˙C˙=B+˙C˙