| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sylow2b.x |
|
| 2 |
|
sylow2b.xf |
|
| 3 |
|
sylow2b.h |
|
| 4 |
|
sylow2b.k |
|
| 5 |
|
sylow2b.a |
|
| 6 |
|
sylow2b.r |
|
| 7 |
|
sylow2b.m |
|
| 8 |
|
eqid |
|
| 9 |
8
|
subggrp |
|
| 10 |
3 9
|
syl |
|
| 11 |
|
pwfi |
|
| 12 |
2 11
|
sylib |
|
| 13 |
1 6
|
eqger |
|
| 14 |
4 13
|
syl |
|
| 15 |
14
|
qsss |
|
| 16 |
12 15
|
ssexd |
|
| 17 |
10 16
|
jca |
|
| 18 |
|
vex |
|
| 19 |
18
|
mptex |
|
| 20 |
19
|
rnex |
|
| 21 |
7 20
|
fnmpoi |
|
| 22 |
21
|
a1i |
|
| 23 |
|
eqid |
|
| 24 |
|
oveq2 |
|
| 25 |
24
|
eleq1d |
|
| 26 |
1 2 3 4 5 6 7
|
sylow2blem1 |
|
| 27 |
6
|
ovexi |
|
| 28 |
|
subgrcl |
|
| 29 |
3 28
|
syl |
|
| 30 |
29
|
3ad2ant1 |
|
| 31 |
1
|
subgss |
|
| 32 |
3 31
|
syl |
|
| 33 |
32
|
sselda |
|
| 34 |
33
|
3adant3 |
|
| 35 |
|
simp3 |
|
| 36 |
1 5
|
grpcl |
|
| 37 |
30 34 35 36
|
syl3anc |
|
| 38 |
|
ecelqsg |
|
| 39 |
27 37 38
|
sylancr |
|
| 40 |
26 39
|
eqeltrd |
|
| 41 |
40
|
3expa |
|
| 42 |
23 25 41
|
ectocld |
|
| 43 |
42
|
ralrimiva |
|
| 44 |
43
|
ralrimiva |
|
| 45 |
|
ffnov |
|
| 46 |
22 44 45
|
sylanbrc |
|
| 47 |
8
|
subgbas |
|
| 48 |
3 47
|
syl |
|
| 49 |
48
|
xpeq1d |
|
| 50 |
49
|
feq2d |
|
| 51 |
46 50
|
mpbid |
|
| 52 |
|
oveq2 |
|
| 53 |
|
id |
|
| 54 |
52 53
|
eqeq12d |
|
| 55 |
|
oveq2 |
|
| 56 |
|
oveq2 |
|
| 57 |
56
|
oveq2d |
|
| 58 |
55 57
|
eqeq12d |
|
| 59 |
58
|
2ralbidv |
|
| 60 |
54 59
|
anbi12d |
|
| 61 |
|
simpl |
|
| 62 |
3
|
adantr |
|
| 63 |
|
eqid |
|
| 64 |
63
|
subg0cl |
|
| 65 |
62 64
|
syl |
|
| 66 |
|
simpr |
|
| 67 |
1 2 3 4 5 6 7
|
sylow2blem1 |
|
| 68 |
61 65 66 67
|
syl3anc |
|
| 69 |
8 63
|
subg0 |
|
| 70 |
62 69
|
syl |
|
| 71 |
70
|
oveq1d |
|
| 72 |
1 5 63
|
grplid |
|
| 73 |
29 72
|
sylan |
|
| 74 |
73
|
eceq1d |
|
| 75 |
68 71 74
|
3eqtr3d |
|
| 76 |
62
|
adantr |
|
| 77 |
76 28
|
syl |
|
| 78 |
76 31
|
syl |
|
| 79 |
|
simprl |
|
| 80 |
78 79
|
sseldd |
|
| 81 |
|
simprr |
|
| 82 |
78 81
|
sseldd |
|
| 83 |
66
|
adantr |
|
| 84 |
1 5
|
grpass |
|
| 85 |
77 80 82 83 84
|
syl13anc |
|
| 86 |
85
|
eceq1d |
|
| 87 |
61
|
adantr |
|
| 88 |
1 5
|
grpcl |
|
| 89 |
77 82 83 88
|
syl3anc |
|
| 90 |
1 2 3 4 5 6 7
|
sylow2blem1 |
|
| 91 |
87 79 89 90
|
syl3anc |
|
| 92 |
86 91
|
eqtr4d |
|
| 93 |
5
|
subgcl |
|
| 94 |
76 79 81 93
|
syl3anc |
|
| 95 |
1 2 3 4 5 6 7
|
sylow2blem1 |
|
| 96 |
87 94 83 95
|
syl3anc |
|
| 97 |
1 2 3 4 5 6 7
|
sylow2blem1 |
|
| 98 |
87 81 83 97
|
syl3anc |
|
| 99 |
98
|
oveq2d |
|
| 100 |
92 96 99
|
3eqtr4d |
|
| 101 |
100
|
ralrimivva |
|
| 102 |
62 47
|
syl |
|
| 103 |
8 5
|
ressplusg |
|
| 104 |
3 103
|
syl |
|
| 105 |
104
|
oveqdr |
|
| 106 |
105
|
oveq1d |
|
| 107 |
106
|
eqeq1d |
|
| 108 |
102 107
|
raleqbidv |
|
| 109 |
102 108
|
raleqbidv |
|
| 110 |
101 109
|
mpbid |
|
| 111 |
75 110
|
jca |
|
| 112 |
23 60 111
|
ectocld |
|
| 113 |
112
|
ralrimiva |
|
| 114 |
51 113
|
jca |
|
| 115 |
|
eqid |
|
| 116 |
|
eqid |
|
| 117 |
|
eqid |
|
| 118 |
115 116 117
|
isga |
|
| 119 |
17 114 118
|
sylanbrc |
|