Metamath Proof Explorer


Theorem sylow3lem2

Description: Lemma for sylow3 , first part. The stabilizer of a given Sylow subgroup K in the group action .(+) acting on all of G is the normalizer N_G(K). (Contributed by Mario Carneiro, 19-Jan-2015)

Ref Expression
Hypotheses sylow3.x X=BaseG
sylow3.g φGGrp
sylow3.xf φXFin
sylow3.p φP
sylow3lem1.a +˙=+G
sylow3lem1.d -˙=-G
sylow3lem1.m ˙=xX,yPpSylGranzyx+˙z-˙x
sylow3lem2.k φKPpSylG
sylow3lem2.h H=uX|u˙K=K
sylow3lem2.n N=xX|yXx+˙yKy+˙xK
Assertion sylow3lem2 φH=N

Proof

Step Hyp Ref Expression
1 sylow3.x X=BaseG
2 sylow3.g φGGrp
3 sylow3.xf φXFin
4 sylow3.p φP
5 sylow3lem1.a +˙=+G
6 sylow3lem1.d -˙=-G
7 sylow3lem1.m ˙=xX,yPpSylGranzyx+˙z-˙x
8 sylow3lem2.k φKPpSylG
9 sylow3lem2.h H=uX|u˙K=K
10 sylow3lem2.n N=xX|yXx+˙yKy+˙xK
11 10 ssrab3 NX
12 sseqin2 NXXN=N
13 11 12 mpbi XN=N
14 simpr φuXuX
15 8 adantr φuXKPpSylG
16 mptexg KPpSylGzKu+˙z-˙uV
17 rnexg zKu+˙z-˙uVranzKu+˙z-˙uV
18 15 16 17 3syl φuXranzKu+˙z-˙uV
19 simpr x=uy=Ky=K
20 simpl x=uy=Kx=u
21 20 oveq1d x=uy=Kx+˙z=u+˙z
22 21 20 oveq12d x=uy=Kx+˙z-˙x=u+˙z-˙u
23 19 22 mpteq12dv x=uy=Kzyx+˙z-˙x=zKu+˙z-˙u
24 23 rneqd x=uy=Kranzyx+˙z-˙x=ranzKu+˙z-˙u
25 24 7 ovmpoga uXKPpSylGranzKu+˙z-˙uVu˙K=ranzKu+˙z-˙u
26 14 15 18 25 syl3anc φuXu˙K=ranzKu+˙z-˙u
27 26 adantr φuXuNu˙K=ranzKu+˙z-˙u
28 slwsubg KPpSylGKSubGrpG
29 8 28 syl φKSubGrpG
30 29 adantr φuXKSubGrpG
31 eqid zKu+˙z-˙u=zKu+˙z-˙u
32 1 5 6 31 10 conjnmz KSubGrpGuNK=ranzKu+˙z-˙u
33 30 32 sylan φuXuNK=ranzKu+˙z-˙u
34 27 33 eqtr4d φuXuNu˙K=K
35 simplr φuXu˙K=KuX
36 simprl φuXu˙K=KwXu˙K=K
37 26 adantr φuXu˙K=KwXu˙K=ranzKu+˙z-˙u
38 36 37 eqtr3d φuXu˙K=KwXK=ranzKu+˙z-˙u
39 38 eleq2d φuXu˙K=KwXu+˙wKu+˙wranzKu+˙z-˙u
40 ovex u+˙wV
41 eqeq1 v=u+˙wv=u+˙z-˙uu+˙w=u+˙z-˙u
42 41 rexbidv v=u+˙wzKv=u+˙z-˙uzKu+˙w=u+˙z-˙u
43 31 rnmpt ranzKu+˙z-˙u=v|zKv=u+˙z-˙u
44 40 42 43 elab2 u+˙wranzKu+˙z-˙uzKu+˙w=u+˙z-˙u
45 simprr φuXu˙K=KwXzKu+˙w=u+˙z-˙uu+˙w=u+˙z-˙u
46 2 ad3antrrr φuXu˙K=KwXzKu+˙w=u+˙z-˙uGGrp
47 simpllr φuXu˙K=KwXzKu+˙w=u+˙z-˙uuX
48 1 subgss KSubGrpGKX
49 29 48 syl φKX
50 49 ad3antrrr φuXu˙K=KwXzKu+˙w=u+˙z-˙uKX
51 simprl φuXu˙K=KwXzKu+˙w=u+˙z-˙uzK
52 50 51 sseldd φuXu˙K=KwXzKu+˙w=u+˙z-˙uzX
53 1 5 6 grpaddsubass GGrpuXzXuXu+˙z-˙u=u+˙z-˙u
54 46 47 52 47 53 syl13anc φuXu˙K=KwXzKu+˙w=u+˙z-˙uu+˙z-˙u=u+˙z-˙u
55 45 54 eqtr2d φuXu˙K=KwXzKu+˙w=u+˙z-˙uu+˙z-˙u=u+˙w
56 1 6 grpsubcl GGrpzXuXz-˙uX
57 46 52 47 56 syl3anc φuXu˙K=KwXzKu+˙w=u+˙z-˙uz-˙uX
58 simplrr φuXu˙K=KwXzKu+˙w=u+˙z-˙uwX
59 1 5 grplcan GGrpz-˙uXwXuXu+˙z-˙u=u+˙wz-˙u=w
60 46 57 58 47 59 syl13anc φuXu˙K=KwXzKu+˙w=u+˙z-˙uu+˙z-˙u=u+˙wz-˙u=w
61 55 60 mpbid φuXu˙K=KwXzKu+˙w=u+˙z-˙uz-˙u=w
62 1 5 6 grpsubadd GGrpzXuXwXz-˙u=ww+˙u=z
63 46 52 47 58 62 syl13anc φuXu˙K=KwXzKu+˙w=u+˙z-˙uz-˙u=ww+˙u=z
64 61 63 mpbid φuXu˙K=KwXzKu+˙w=u+˙z-˙uw+˙u=z
65 64 51 eqeltrd φuXu˙K=KwXzKu+˙w=u+˙z-˙uw+˙uK
66 65 rexlimdvaa φuXu˙K=KwXzKu+˙w=u+˙z-˙uw+˙uK
67 44 66 biimtrid φuXu˙K=KwXu+˙wranzKu+˙z-˙uw+˙uK
68 simpr φuXu˙K=KwXw+˙uKw+˙uK
69 oveq2 z=w+˙uu+˙z=u+˙w+˙u
70 69 oveq1d z=w+˙uu+˙z-˙u=u+˙w+˙u-˙u
71 ovex u+˙w+˙u-˙uV
72 70 31 71 fvmpt w+˙uKzKu+˙z-˙uw+˙u=u+˙w+˙u-˙u
73 68 72 syl φuXu˙K=KwXw+˙uKzKu+˙z-˙uw+˙u=u+˙w+˙u-˙u
74 2 ad3antrrr φuXu˙K=KwXw+˙uKGGrp
75 simpllr φuXu˙K=KwXw+˙uKuX
76 simplrr φuXu˙K=KwXw+˙uKwX
77 1 5 grpass GGrpuXwXuXu+˙w+˙u=u+˙w+˙u
78 74 75 76 75 77 syl13anc φuXu˙K=KwXw+˙uKu+˙w+˙u=u+˙w+˙u
79 78 oveq1d φuXu˙K=KwXw+˙uKu+˙w+˙u-˙u=u+˙w+˙u-˙u
80 1 5 grpcl GGrpuXwXu+˙wX
81 74 75 76 80 syl3anc φuXu˙K=KwXw+˙uKu+˙wX
82 1 5 6 grppncan GGrpu+˙wXuXu+˙w+˙u-˙u=u+˙w
83 74 81 75 82 syl3anc φuXu˙K=KwXw+˙uKu+˙w+˙u-˙u=u+˙w
84 73 79 83 3eqtr2d φuXu˙K=KwXw+˙uKzKu+˙z-˙uw+˙u=u+˙w
85 ovex u+˙z-˙uV
86 85 31 fnmpti zKu+˙z-˙uFnK
87 fnfvelrn zKu+˙z-˙uFnKw+˙uKzKu+˙z-˙uw+˙uranzKu+˙z-˙u
88 86 68 87 sylancr φuXu˙K=KwXw+˙uKzKu+˙z-˙uw+˙uranzKu+˙z-˙u
89 84 88 eqeltrrd φuXu˙K=KwXw+˙uKu+˙wranzKu+˙z-˙u
90 89 ex φuXu˙K=KwXw+˙uKu+˙wranzKu+˙z-˙u
91 67 90 impbid φuXu˙K=KwXu+˙wranzKu+˙z-˙uw+˙uK
92 39 91 bitrd φuXu˙K=KwXu+˙wKw+˙uK
93 92 anassrs φuXu˙K=KwXu+˙wKw+˙uK
94 93 ralrimiva φuXu˙K=KwXu+˙wKw+˙uK
95 10 elnmz uNuXwXu+˙wKw+˙uK
96 35 94 95 sylanbrc φuXu˙K=KuN
97 34 96 impbida φuXuNu˙K=K
98 97 rabbi2dva φXN=uX|u˙K=K
99 13 98 eqtr3id φN=uX|u˙K=K
100 9 99 eqtr4id φH=N